Squamous cell carcinoma of the skin (SCC) can progress by stages: sun-damaged epidermis, with individual disordered keratinocytes; actinic keratosis (AK), spontaneously regressing keratinized patches having aberrant cell differentiation and proliferation; carcinoma in situ; SCC and metastasis. To understand how sunlight acts as a carcinogen, we determined the stage at which sunlight mutates the p53 tumour-suppressor gene and identified a function for p53 in skin. The p53 mutations induced by ultraviolet radiation and found in > 90% of human SCCs were present in AKs. Inactivating p53 in mouse skin reduced the appearance of sunburn cells, apoptotic keratinocytes generated by overexposure to ultraviolet. Skin thus appears to possess a p53-dependent 'guardian-of-the-tissue' response to DNA damage which aborts precancerous cells. If this response is reduced in a single cell by a prior p53 mutation, sunburn can select for clonal expansion of the p53-mutated cell into the AK. Sunlight can act twice: as tumour initiator and tumour promoter.
HSC homing, quiescence, and self-renewal depend on the bone marrow HSC niche. A large proportion of solid tumor metastases are bone metastases, known to usurp HSC homing pathways to establish footholds in the bone marrow. However, it is not clear whether tumors target the HSC niche during metastasis. Here we have shown in a mouse model of metastasis that human prostate cancer (PCa) cells directly compete with HSCs for occupancy of the mouse HSC niche. Importantly, increasing the niche size promoted metastasis, whereas decreasing the niche size compromised dissemination. Furthermore, disseminated PCa cells could be mobilized out of the niche and back into the circulation using HSC mobilization protocols. Finally, once in the niche, tumor cells reduced HSC numbers by driving their terminal differentiation. These data provide what we believe to be the first evidence that the HSC niche serves as a direct target for PCa during dissemination and plays a central role in bone metastases. Our work may lead to better understanding of the molecular events involved in bone metastases and new therapeutic avenues for an incurable disease. IntroductionMetastases represent the most common malignant tumors involving the skeleton: nearly 70% of patients with breast cancer or prostate cancer (PCa) -and approximately 15%-30% of patients with carcinomas of the lung, colon, stomach, bladder, uterus, rectum, thyroid, or kidney -have bone lesions (1). Several mechanisms are thought to account for the organ-specific nature of bone metastases, including direct tumor extensions, retrograde venous flow, and tumor embolization. It is also clear, however, that anatomy alone does not explain the organ-specific pattern of metastasis.One hypothesis that has gained favor is that the metastatic process is functionally similar to the homing behavior of HSCs to the BM (2, 3). HSC homing, quiescence, and self-renewal in the BM are now known to depend on a region termed the HSC niche (4, 5). Recent studies identified cells of the osteoblastic and endothelial lineages as key components of the niche (6-11). Molecules that play critical roles in HSC niche selection are now thought to be used by metastases to establish footholds in the BM (2, 3), including chemoattractants (CXCL12; also referred to as stromal-derived factor-1; refs. 3, 12), attachment factors (annexin II [Anxa2]; ref. 13), regulators of cell growth, and vascular recruitment ref. 14). Once in the BM, tumor cells parasitize the bone microenvironment to regulate long-term survival/dormancy and, ultimately, metastatic growth. However, it is not known whether metastatic cells specifically target the HSC niche during dissemination.In the present work, we used a PCa model to demonstrate that tumors directly compete with HSCs for occupancy of the endosteal HSC niche during BM transplantation (BMT). Critically, HSCs
To identify the sites in the p53 tumor suppressor gene most susceptible to carcinogenic mutation by sunlight, the entire coding region of 27 basal cell carcinomas (BCCs) of the skin was sequenced. Fifty-six percent of tumors contained mutations, and these were UV-like: primarily CC -* TT or C --T changes at dipyrimidine sites. Such mutations can alter more than half of the 393 amino acids in p53, but two-thirds occurred at nine sites at which mutations were seen more than once in BCC or in 27 previously studied squamous cell carcinomas of the skin. Seven of these mutation hotspots were specific to skin cancers. Internal-cancer hotspots not located at dipyrimidine sites were not mutated in skin cancers; moreover, UV photoproducts were absent at these nucleotides.The existence of hotspots altered the process of inactivating p53 in BCC compared to other cancers: allelic loss was rare, but 45% of the point mutations were accompanied by a second point mutation on the other allele. At least one of each pair was located at a hotspot. Sunlight, acting at mutation hotspots, appears to cause mutations so frequently that it is often responsible for two genetic events in BCC development.
Our data demonstrate that quantification of plasma DNA is an accurate technique amenable to standardization, which might complement current methods for the prediction of patient survival. This approach might be considered for evaluation in large prospective studies.
Our recent studies have shown that annexin II, expressed on the cell surface of osteoblasts, plays an important role in the adhesion of hematopoietic stem cells (HSCs) to the endosteal niche. Similarly, prostate cancer (PCa) cells express the annexin II receptor and seem to use the stem cell niche for homing to the bone marrow. The role of the niche is thought to be the induction and sustenance of HSC dormancy. If metastatic PCa cells occupy a similar or the same ecological niche as HSCs, then it is likely that the initial role of the HSC niche will be to induce dormancy in metastatic cells. In this study, we demonstrate that the binding of PCa to annexin II induces the expression of the growth arrest-specific 6 (GAS6) receptors AXL, Sky, and Mer, which, in the hematopoietic system, induce dormancy. In addition, GAS6 produced by osteoblasts prevents PCa proliferation and protects PCa from chemotherapy-induced apoptosis. Our results suggest that the activation of GAS6 receptors on PCa in the bone marrow environment may play a critical role as a molecular switch, establishing metastatic tumor cell dormancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.