There is a considerable variation in efficacy of melphalan therapy in multiple myeloma (MM) and other hematopoietic tumors. We hypothesized that this may be due to variations in the expression of influx and efflux transporters of melphalan. We measured the expression of the influx transporters LAT1, LAT2, and TAT1 and the efflux transporters MDR1, MRP1 and BCRP by quantitative RT-PCR and related their expression to the intracellular accumulation and cytotoxicity of melphalan in 7 MM and 21 non-MM hematopoietic tumor cell lines. Variation in the intracellular accumulation accounted for nearly half of the variation in the cytotoxicity of melphalan in MM cell lines (r(2)=0.47, P=0.04). High expression of the efflux transporter MDR1 was associated with low intracellular accumulation and low cytotoxicity of melphalan (r(2)=0.56, P=0.03 and r(2)=0.62, P=0.02, respectively). The effect was reversed by the MDR1 inhibitor cyclosporine. In addition, the MDR1 overexpressing HL-60 cell line showed 10-fold higher resistance to melphalan than the non-MDR1 expressing one. Again, the resistance was reversed by cyclosporine and by MDR1-specific shRNA. LAT1 was the major influx transporter in tumor cell lines with 4000-fold higher expression than LAT2. Down-regulation of LAT1 by siRNA reduced the melphalan uptake by 58% and toxicity by 3.5-fold, but natural variation in expression between the tumor cell lines was not associated with accumulation or cytotoxicity of melphalan. In conclusion, tumor-specific variations in the expression of the efflux transporter MDR1, but not of the influx transporter LAT1, affect the intracellular accumulation of melphalan and thus determine its cytotoxicity.
Melphalan is associated with severe side effects such as mucositis, diarrhea, and myelosuppression. We investigated how much the individual severity of these side effects is predicted by pharmacokinetics. In addition, we studied glutathione S-transferase GSTM1, GSTT1, and GSTP1 polymorphisms in relation to adverse events. A high interindividual pharmacokinetic variability was observed in 84 patients. There was a linear correlation between creatinine and melphalan clearance (P=0.0004). Patients treated with a dose > or = 70 mg/m(2) had a 23-fold increased risk to develop mucositis (P<0.001) and a 12-fold increased risk to develop diarrhea (P<0.001) compared with lower doses. The GSTP1 codon 105 polymorphism may be relevant for development of mucositis and the GSTT1 deletion may predict diarrhea, but these findings require confirmation. Melphalan-induced side effects were significantly dependent only on dose. Therapeutic drug monitoring or genotyping for GST does not appear to be very helpful in optimizing therapy with melphalan.
The study confirmed that these transporter genes are highly conserved, particularly in the coding sequences. Genetic variation in 4F2hc, LAT1, and LAT2 does not appear to be a major cause of inter-individual variability in pharmacokinetics and of adverse reactions to melphalan.
Beta-2-adrenergic agonists are first line therapeutics in the treatment of asthma and chronic obstructive pulmonary disease (COPD). Upon inhalation, bronchodilation is achieved after binding to β 2 -receptors, which are primarily localized on airway smooth muscle cells. Given that β 2 -adrenergic agonists chemically are bases, they carry net positive charge at physiologic pH value in the lungs (i.e., pH 7.4). Here, we studied whether β 2 -agonists interact with organic cation transporters (OCT) and whether this interaction exerted an influence on their passage across the respiratory epithelium to their target receptors. [ 14 C]-TEA uptake into proximal (i.e., Calu-3) and distal (i.e., A549 and NCI-H441) lung epithelial cells was significantly reduced in the presence of salbutamol sulfate, formoterol fumarate, and salmeterol xinafoate in vitro. Expression of all five members of the OCT/N family has been confirmed in human pulmonary epithelial cells in situ and in vitro, which makes the identification of the transporter(s) responsible for the β 2 -agonist interaction challenging. Thus, additional experiments were carried out in HEK-293 cells transfected with hOCT1−3. The most pronounced inhibition of organic cation uptake by β 2 -agonists was observed in hOCT1 overexpressing HEK-293 cells. hOCT3 transfected HEK-293 cells were affected to a lesser extent, and in hOCT2 transfectants only marginal inhibition of organic cation uptake by β 2 -agonists was observed. Bidirectional transport studies across confluent NCI-H441 cell monolayers revealed a net absorptive transport of [ 3 H]-salbutamol, which was sensitive to inhibition by the OCT1 modulator, verapamil. Accordingly, salbutamol uptake into hOCT1 overexpressing HEK-293 cells was time-and concentration-dependent and could be completely blocked by decynium-22. Taken together, our data suggest that β 2 -agonists are specific substrates and inhibitors of OCT1 in human respiratory epithelial cells and that this transporter might play a role in the pulmonary disposition of drugs of this class.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.