The blood-brain barrier possesses active transporters carrying brain-permeable xenobiotics back into the blood against concentration gradients. We demonstrate that multidrug resistance transporter (Mdr)-1 is upregulated on capillary endothelium after focal cerebral ischemia; moreover, Mdr-1 deactivation by pharmacological inhibition or genetic knockout preferably enhances the accumulation and efficacy of two neuroprotectants known as Mdr-1 substrates in the ischemic brain. We predict that Mdr-1 inhibition may greatly facilitate neuroprotective therapies.
Based on its trophic effects on neurons and vascular cells, vascular endothelial growth factor (VEGF) is a promising candidate for the treatment of neurodegenerative diseases. To evaluate the therapeutic potential of VEGF, we here examined effects of this growth factor on the degeneration of axotomized retinal ganglion cells (RGCs), which, as CNS-derived neurons, offer themselves in an excellent way to study neuroprotection in vivo. Making use of a transgenic mouse line that constitutively expresses human VEGF under a neuron-specific enolase promoter, we show that (1) the VEGF-transgenic retina overexpresses human VEGF, (2) RGCs carry the VEGF receptor-2, and (3) vascular networks in normal and axotomized VEGF-transgenic (tg) retinas do not differ from control animals. After axotomy, RGCs of VEGF-tg mice were protected against delayed degeneration, as compared with wild-type littermates. Western blots revealed increased phosphorylated ERK-1/2 and Akt and reduced phosphorylated p38 and activated caspase-3 levels in axotomized VEGF-transgenic retinas. Intravitreous injections of pharmacological ERK-1/2 (PD98059) or Akt (LY294002) inhibitors showed that VEGF exerts neuroprotection by dual activation of ERK-1/2 and Akt pathways. In view that axotomy-induced RGC death occurs slowly and considering that RGCs are CNS-derived neurons, we predict the clinical implementation of VEGF in neurodegenerative diseases of both brain and retina.
By preventing access of drugs to the CNS, the blood-brain barrier hampers developments in brain pharmacotherapy. Strong efforts are currently being made to identify drugs that accumulate more efficaciously in ischaemic brain tissue. We identified an ATP-binding cassette (ABC) transporter, ABCC1, which is expressed on the abluminal surface of the brain capillary endothelium and mildly downregulated in response to focal cerebral ischaemia, induced by intraluminal middle cerebral artery occlusion. In biodistribution studies we show that ABCC1 promotes the accumulation of known neuroprotective and neurotoxic compounds in the ischaemic and non-ischaemic brain, ABCC1 deactivation reducing tissue concentrations by up to two orders of magnitude. As such, ABCC1's expression and functionality in the brain differs from the liver, spleen and testis, where ABCC1 is strongly expressed on parenchymal cells, resulting -- in case of liver and testis -- in directed transport from the tissue into the blood. After focal cerebral ischaemia, ABCC1 deactivation abolished the efficacy of both neuroprotective and neurotoxic compounds. Our data indicate that ABCC1 acts as gateway for pharmacological compounds to the stroke brain. We suggest that the tailoring of compounds binding to abluminal but not luminal ABC transporters may facilitate stroke pharmacotherapy.
The blood-brain barrier is a natural diffusion barrier, which expresses active carriers extruding drugs on their way to the brain back into the blood against concentration gradients. Whereas these so-called adenosine triphosphate-binding cassette (ABC) transporters prevent the brain entry of toxic compounds under physiological conditions, they complicate pharmacotherapies in neurological disease. Recent observations in animal models of ischemic stroke, drug-resistant epilepsy, and brain cancer showed that the prototype of ABC transporters, ABCB1, is upregulated on brain injury, deactivation of this carrier considerably enhancing the accumulation of neuroprotective, antiepileptic, and chemotherapeutic compounds. These studies provide the proof of concept that the efficacy of brain-targeting drugs may significantly be improved when drug efflux is blocked. Under clinical conditions, efforts currently are made to enhance drug accumulation by selecting new compounds that do not bind to efflux carriers or deactivating ABC transporters by targeted downregulation or pharmacological inhibition. We predict that strategies aiming at circumventing drug efflux may greatly facilitate progress in neurological therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.