Striated muscles are present in bilaterian animals (e.g. vertebrates, insects, annelids) and some non-bilaterian eumetazoans (i.e. cnidarians and ctenophores). The striking ultrastructural similarity of striated muscles between these animal groups is thought to reflect a common evolutionary origin1, 2. Here we show that a muscle protein core set, including a Myosin type II Heavy Chain motor protein characteristic of striated muscles in vertebrates (MyHC-st), was already present in unicellular organisms before the origin of multicellular animals. Furthermore, myhc-st and myhc-non-muscle (myhc-nm) orthologues are expressed differentially in two sponges, compatible with the functional diversification of myhc paralogues before the origin of true muscles and the subsequent deployment of MyHC-st in fast-contracting smooth and striated muscle. Cnidarians and ctenophores possess myhc-st orthologues but lack crucial components of bilaterian striated muscles, such as troponin complex and titin genes, suggesting the convergent evolution of striated muscles. Consistently, jellyfish orthologues of a shared set of bilaterian z-disc proteins are not associated with striated muscles, but are instead expressed elsewhere or ubiquitously. The independent evolution of eumetazoan striated muscles through the addition of novel proteins to a pre-existing, ancestral contractile apparatus may serve as a paradigm for the evolution of complex animal cell types.
The sea anemone, Nematostella vectensis , has become an attractive new model organism for comparative genomics and evolutionary developmental biology. Over the last few years, many genes have been isolated and their expression patterns studied to gain insight into their function. More recently, functional tools have been developed to manipulate gene function; however, most of these approaches rely on microinjection and are limited to early stages of development. Transgenic lines would significantly enhance the tractability of the system. In particular, the study of gene- or tissue-specific promoters would be most useful. Here we report the stable establishment of a transgenic line using the I-SceI meganuclease system to facilitate integration into the genome. We isolated a 1.6-kb fragment of the regulatory upstream region of the Myosin Heavy Chain1 ( MyHC1 ) gene and found that the transgene is specifically expressed in the retractor and tentacle muscles of Nematostella polyps, faithfully reproducing the expression of the endogenous MyHC1 gene. This demonstrates that the 1.6-kb fragment contains all of the regulatory elements necessary to drive correct expression and suggests that retractor and tentacle muscles in Nematostella are distinct from other myoepithelial cells. The transgene is transmitted through the germline at high frequency, and G 1 transgenic polyps have only one integration site. The relatively high frequency of transgenesis, in combination with gene- or tissue-specific promoters, will foster experimental possibilities for studying in vivo gene functions in gene regulatory networks and developmental processes in the nonbilaterian sea anemone, Nematostella vectensis .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.