In this paper, we review the emerging concept of digital twins (DTs) for urban water systems (UWS) based on the literature, stakeholder interviews and analyzing the current DT implementation process in the utility company VCS Denmark (VCS). Here, DTs for UWS are placed in the context of DTs at the component, unit process/operation or hydraulic structure, treatment plant, system, city, and societal levels. A UWS DT is characterized as a systematic virtual representation of the elements and dynamics of the physical system, organized in a star-structure with a set of features connected by data links that are based on standards for open data. This allows the overall functionality to be broken down into smaller, tangible units (features), enabling microservices that communicate via data links to emerge (the most central feature), facilitated by application programing interfaces (APIs). Coupled to the physical system, simulation models and advanced analytics are among the most important features. We propose distinguishing between living and prototyping DTs, where the term “living” refers to coupling observations from an ever-changing physical twin (which may change with, e.g., urban growth) with a simulation model, through a data link connecting the two. A living DT is thus a near real-time representation of an UWS and can be used for operational and control purposes. A prototyping DT represents a scenario for the system without direct coupling to real-time observations, which can be used for design or planning. By acknowledging that different DTs exist, it is possible to identify the value-creation from DTs achieved by different end-users inside and outside a utility organization. Analyzing the DT workflow in VCS shows that a DT must be multifunctional, updateable, and adjustable to support potential value creation across the utility company. This study helps clarify key DT terminology for UWS and identifies steps to create a DT by building upon digital ecosystems (DEs) and open standards for data.
Abstract. This paper describes a comprehensive and unique open-access data set for research within hydrological and hydraulic modelling of urban drainage systems. The data comes from a mainly combined urban drainage system covering a 1.7 km2 area in the town of Bellinge, a suburb to the city of Odense, Denmark. The data set consists of up to 10 years of observations (2010–2020) from 13 level meters, one flow meter, one position-sensor and four power sensors in the system, along with rainfall data from three rain gauges and two weather radars (X- and C-band), and meteorological data from a nearby weather station. The system characteristics of the urban drainage system (information about manholes, pipes etc.) can be found in the data set along with characteristics of the surface area (contour lines etc.). Two detailed hydrodynamic, distributed urban drainage models of the system are provided in the software systems Mike Urban and EPA SWMM. The two simulation models generally show similar responses, but systematic differences are present since the models have not been calibrated. With this data set we provide a useful case that enables independent testing and replication of results from future scientific developments and innovation within urban hydrology and urban drainage system research. The data set can be downloaded from https://doi.org/10.11583/DTU.c.5029124, (Pedersen et al., 2021a).
Digital twins of urban drainage systems require simulation models that can adequately replicate the physical system. All models have their limitations, and it is important to investigate when and where simulation results are acceptable and to communicate the level of performance transparently to end-users. This paper first defines a classification of four possible ‘locations of uncertainty’ in integrated urban drainage models. It then develops a structured framework for identifying and diagnosing various types of errors. This framework compares model outputs with in-sewer water level observations based on hydrologic and hydraulic signatures. The approach is applied on a real case study in Odense, Denmark, with examples from three different system sites: a typical manhole, a small flushing chamber, and an internal overflow structure. This allows diagnosing different model errors ranging from issues in the underlying asset database and missing hydrologic processes to limitations in the model software implementation. Structured use of signatures is promising for continuous, iterative improvements of integrated urban drainage models. It also provides a transparent way to communicate the level of model adequacy to end-users.
Abstract. This paper describes a comprehensive and unique open-access data set for research within hydrological and hydraulic modelling of urban drainage systems. The data come from a mainly combined urban drainage system covering a 1.7 km2 area in the town of Bellinge, a suburb of the city of Odense, Denmark. The data set consists of up to 10 years of observations (2010–2020) from 13 level meters, 1 flow meter, 1 position sensor and 4 power sensors in the system, along with rainfall data from three rain gauges and two weather radars (X- and C-band), and meteorological data from a nearby weather station. The system characteristics of the urban drainage system (information about manholes, pipes, etc.) can be found in the data set along with characteristics of the surface area (contour lines, surface description, etc.). Two detailed hydrodynamic, distributed urban drainage models of the system are provided in the software systems MIKE URBAN and EPA Storm Water Management Model (SWMM). The two simulation models generally show similar responses, but systematic differences are present since the models have not been calibrated. With this data set we provide a useful case that will enable independent testing and replication of results from future scientific developments and innovation within urban hydrology and urban drainage systems research. The data set can be downloaded from https://doi.org/10.11583/DTU.c.5029124 (Pedersen et al., 2021a).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.