Protein glycosylation is a ubiquitous post-translational modification that is involved in the regulation of many aspects of protein function. In order to uncover the biological roles of this modification, imaging the glycosylation state of specific proteins within living cells would be of fundamental importance. To date, however, this has not been achieved. Herein, we demonstrate protein-specific detection of the glycosylation of the intracellular proteins OGT, Foxo1, p53, and Akt1 in living cells. Our generally applicable approach relies on Diels-Alder chemistry to fluorescently label intracellular carbohydrates through metabolic engineering. The target proteins are tagged with enhanced green fluorescent protein (EGFP). Förster resonance energy transfer (FRET) between the EGFP and the glycan-anchored fluorophore is detected with high contrast even in presence of a large excess of acceptor fluorophores by fluorescence lifetime imaging microscopy (FLIM).
DNA electrotransfer is a successful technique for gene delivery into cells and represents an attractive alternative to virus-based methods for clinical applications including gene therapy and DNA vaccination. However, little is currently known about the mechanisms governing DNA internalization and its fate inside cells. The objectives of this work were to investigate the role of endocytosis and to quantify the contribution of different routes of cellular trafficking during DNA electrotransfer. To pursue these objectives, we performed flow cytometry and single-particle fluorescence microscopy experiments using inhibitors of endocytosis and endosomal markers. Our results show that ~50% of DNA is internalized by caveolin/raft-mediated endocytosis, 25% by clathrin-mediated endocytosis, and 25% by macropinocytosis. During active transport, DNA is routed through multiple endosomal compartments with, in the hour following electrotransfer, 70% found in Rab5 structures, 50% in Rab11-containing organelles and 30% in Rab9 compartments. Later, 60% of DNA colocalizes with Lamp1 vesicles. Because these molecular markers can overlap while following organelles through several steps of trafficking, the percentages do not sum up to 100%. We conclude that electrotransferred DNA uses the classical endosomal trafficking pathways. Our results are important for a generalized understanding of gene electrotransfer, which is crucial for its safe use in clinics.
Poly(ADP-ribos)ylation (PARylation) is a major posttranslational modification and signaling event in most eukaryotes. Fundamental processes like DNA repair and transcription are coordinated by this transient polymer and its binding to proteins. ADP-ribosyltransferases (ARTs) build complex ADP-ribose chains from NAD(+) onto various acceptor proteins. Molecular studies of PARylation thus remain challenging. Herein, we present the development of bioorthogonally functionalized NAD(+) analogues for the imaging of PARylation in vitro and in cells. Our results show that 2-modified NAD(+) analogues perform remarkably well and can be applied to the in-cell visualization of PARylation simultaneously in two colors. This tool gives insight into the substrate scope of ARTs and will help to further elucidate the biological role of PARylation by offering fast optical, multichannel read-outs.
Poly(ADP ribos)ylation (PARylation) is an impor tant posttranslational protein modification, and is involved in major cellular processes such as gene regulation and DNA repair. Its dysregulation has been linked to several diseases, including cancer. Despite its importance, methods to observe PARylation dynamics within cells are rare. By following a chemical biology approach, we developed a fluorescent NAD + analogue that proved to be a competitive building block for protein PARylation in vitro and in cells. This allowed us to directly monitor the turnover of PAR in living cells at DNA damage sites after near infrared (NIR) microirradiation. Addi tionally, covalent and noncovalent interactions of selected target proteins with PAR chains were visualized in cells by using FLIM FRET microscopy. Our results open up new opportunities for the study of protein PARylation in real time and in live cells, and will thus contribute to a better under standing of its significance in a cellular context.
Locked nucleic acid based antisense oligonucleotides (LNA-ASOs) can reach their intracellular RNA targets without delivery modules. Functional cellular uptake involves vesicular accumulation followed by translocation to the cytosol and nucleus. However, it is yet unknown how many LNA-ASO molecules need to be delivered to achieve target knock down. Here we show by quantitative fluorescence imaging combined with LNA-ASO microinjection into the cytosol or unassisted uptake that ∼105 molecules produce >50% knock down of their targets, indicating that a substantial amount of LNA-ASO escapes from endosomes. Microinjected LNA-ASOs redistributed within minutes from the cytosol to the nucleus and remained bound to nuclear components. Together with the fact that RNA levels for a given target are several orders of magnitude lower than the amounts of LNA-ASO, our data indicate that only a minor fraction is available for RNase H1 mediated reduction of target RNA. When non-specific binding sites were blocked by co-administration of non-related LNA-ASOs, the amount of target LNA-ASO required was reduced by an order of magnitude. Therefore, dynamic processes within the nucleus appear to influence the distribution and activity of LNA-ASOs and may represent important parameters for improving their efficacy and potency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.