The Agrobacterium VirB/D4 transport system mediates the transfer of a nucleoprotein T complex into plant cells, leading to crown gall disease. In addition, several Virulence proteins must somehow be transported to fulfill a function in planta. Here, we used fusions between Cre recombinase and VirE2 or VirF to directly demonstrate protein translocation into plant cells. Transport of the proteins was monitored by a Cre-mediated in planta recombination event resulting in a selectable phenotype and depended on the VirB/D4 transport system but did not require transferred DNA.
Bacterial type IV secretion (T4S) systems mediate the transfer of macromolecular substrates into various target cells, e.g., the conjugative transfer of DNA into bacteria or the transfer of virulence proteins into eukaryotic host cells. The T4S apparatus VirB of the vascular tumor-inducing pathogen Bartonella henselae causes subversion of human endothelial cell (HEC) function. Here we report the identification of multiple protein substrates of VirB, which, upon translocation into HEC, mediate all known VirB-dependent cellular changes. These Bartonella-translocated effector proteins (Beps) A-G are encoded together with the VirB system and the T4S coupling protein VirD4 on a Bartonella-specific pathogenicity island. The Beps display a modular architecture, suggesting an evolution by extensive domain duplication and reshuffling. The C terminus of each Bep harbors at least one copy of the Bepintracellular delivery domain and a short positively charged tail sequence. This biparte C terminus constitutes a transfer signal that is sufficient to mediate VirB͞VirD4-dependent intracellular delivery of reporter protein fusions. The Bep-intracellular delivery domain is also present in conjugative relaxases of bacterial conjugation systems. We exemplarily show that the C terminus of such a conjugative relaxase mediates protein transfer through the Bartonella henselae VirB͞VirD4 system into HEC. Conjugative relaxases may thus represent the evolutionary origin of the here defined T4S signal for protein transfer into human cells.conjugative relaxase ͉ effector protein ͉ endothelial cell ͉ protein translocation ͉ antiapoptosis
Several human pathogens and the plant pathogen Agrobacterium tumefaciens use a type IV secretion system for translocation of effector proteins into host cells. How effector proteins are selected for transport is unknown, but a C-terminal transport signal is present in the proteins translocated by the A. tumefaciens VirB͞D4 type IV secretion system. We characterized this signal in the virulence protein VirF by alanine scanning and further site-directed mutagenesis. The Cre recombinase was used as a reporter to measure the translocation efficiency of Cre-Vir fusions from A. tumefaciens to Arabidopsis. The data unambiguously showed that positive charge is an essential characteristic of the C-terminal transport signal. We increased the sensitivity of this translocation assay by modifying the Cre-induced readout in host cells from kanamycin resistance to GFP expression. This improvement allowed us to detect translocation of the VirD2 relaxase protein in the absence of transferred DNA, showing that attachment to the transferred DNA is not essential for transport by the VirB͞D4 system. We also found another translocated effector protein, namely the VirD5 protein encoded by the tumor-inducing plasmid. According to secondary structure predictions, the C termini of all VirB͞D4-translocated proteins identified so far are unstructured; however, they contain a characteristic hydropathic profile. Based on sequence alignments and mutational analysis of VirF, we conclude that the C-terminal transport signal for recruitment and translocation of effector proteins by the A. tumefaciens VirB͞D4 system is hydrophilic and has a net positive charge with a consensus motif of R-X(7)-R-X-R-X-R-X-X(n)>. translocation signal ͉ type IV secretion ͉ Cre recombinase reporter assay for translocation ͉ VirF protein ͉ effector protein
SummaryThe symbiosis island of Mesorhizobium loti strain R7A contains genes with strong similarity to the structural vir genes ( virB1-11 ; virD4 ) of Agrobacterium tumefaciens that encode the type IV secretion system (T4SS) required for T-DNA transfer to plants. In contrast, M. loti strain MAFF303099 lacks these genes but contains genes not present in strain R7A that encode a type III secretion system (T3SS). Here we show by hybridization analysis that most M. loti strains contain the VirB/D4 T4SS and not the T3SS. Strikingly, strain R7A vir gene mutants formed large nodules containing bacteroids on Leucaena leucocephala in contrast to the wild-type strain that formed only uninfected tumour-like structures. A rhcJ T3SS mutant of strain MAFF303099 also nodulated L. leucocephala , unlike the wild type. On Lotus corniculatus , the vir mutants were delayed in nodulation and were less competitive compared with the wild type. Two strain R7A genes, msi059 and msi061 , were identified through their mutant phenotypes as possibly encoding translocated effector proteins. Both Msi059 and Msi061 were translocated through the A. tumefaciens VirB/D4 system into Saccharomyces cerevisiae and Arabidopsis thaliana , as shown using the Cre recombinase Reporter Assay for Translocation (CRAfT). Taken together, these results suggest that the VirB/D4 T4SS of M. loti R7A plays an analogous symbiotic role to that of T3SS found in other rhizobia. The heterologous translocation of rhizobial proteins by the Agrobacterium VirB/D4 T4SS is the first demonstration that rhizobial effector proteins are translocated into plant cells and confirms functional conservation between the M. loti and A. tumefaciens T4SS.
The specific and covalent addition of ubiquitin to proteins, known as ubiquitination, is a eukaryotic-specific modification central to many cellular processes, such as cell cycle progression, transcriptional regulation, and hormone signaling. Polyubiquitination is a signal for the 26S proteasome to destroy earmarked proteins, but depending on the polyubiquitin chain topology, it can also result in new protein properties. Both ubiquitin-orchestrated protein degradation and modification have also been shown to be essential for the host's immune response to pathogens. Many animal and plant pathogenic bacteria utilize type III and/or type IV secretion systems to inject effector proteins into host cells, where they subvert host signaling cascades as part of their infection strategy. Recent progress in the determination of effector function has taught us that playing with the host's ubiquitination system seems a general tactic among bacteria. Here, we discuss how bacteria exploit this system to control the timing of their effectors' action by programming them for degradation, to block specific intermediates in mammalian or plant innate immunity, or to target host proteins for degradation by mimicking specific ubiquitin/proteasome system components. In addition to analyzing the effectors that have been described in the literature, we screened publicly available bacterial genomes for mimicry of ubiquitin proteasome system subunits and detected several new putative effectors. Our understanding of the intimate interplay between pathogens and their host's ubiquitin proteasome system is just beginning. This exciting research field will aid in better understanding this interplay, and may also provide new insights into eukaryotic ubiquitination processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.