Shear wave elastography (SWE) is a potentially valuable tool to noninvasively assess ventricular function in children with cardiac disorders, which could help in the early detection of abnormalities in muscle characteristics. Initial experiments demonstrated the potential of this technique in measuring ventricular stiffness; however, its performance remains to be validated as complicated shear wave (SW) propagation characteristics are expected to arise due to the complex non-homogenous structure of the myocardium. In this work, we investigated the (i) accuracy of different shear modulus estimation techniques (time-of-flight (TOF) method and phase velocity analysis) across myocardial thickness and (ii) effect of the ventricular geometry, surroundings, acoustic loading, and material viscoelasticity on SW physics. A generic pediatric (10-15-year old) left ventricular model was studied numerically and experimentally. For the SWE experiments, a polyvinylalcohol replicate of the cardiac geometry was fabricated and SW acquisitions were performed on different ventricular areas using varying probe orientations. Additionally, the phantom's stiffness was obtained via mechanical tests. The results of the SWE experiments revealed the following trends for stiffness estimation across the phantom's thickness: a slight stiffness overestimation for phase speed analysis and a clear stiffness underestimation for the TOF method for all acquisitions. The computational model provided valuable 3-D insights in the physical factors influencing SW patterns, especially the surroundings (water), interface force, and viscoelasticity. In conclusion, this paper presents a validation study of two commonly used shear modulus estimators for different ventricular locations and the essential role of SW modeling in understanding SW physics in the pediatric myocardium.
Supersonic shear wave imaging (SSI) is a noninvasive, ultrasound-based technique to quantify the mechanical properties of bulk tissues by measuring the propagation speed of shear waves (SW) induced in the tissue with an ultrasound transducer. The technique has been successfully validated in liver and breast (tumor) diagnostics and is potentially useful for the assessment of the stiffness of arteries. However, SW propagation in arteries is subjected to different wave phenomena potentially affecting the measurement accuracy. Therefore, we assessed SSI in a less complex ex vivo setup, that is, a thick-walled and rectangular slab of an excised equine aorta. Dynamic uniaxial mechanical testing was performed during the SSI measurements, to dispose of a reference material assessment. An ultrasound probe was fixed in an angle position controller with respect to the tissue to investigate the effect of arterial anisotropy on SSI results. Results indicated that SSI was able to pick up stretch-induced stiffening of the aorta. SW velocities were significantly higher along the specimen's circumferential direction than in the axial direction, consistent with the circumferential orientation of collagen fibers. Hence, we established a first step in studying SW propagation in anisotropic tissues to gain more insight into the feasibility of SSI-based measurements in arteries.
Shear wave elastography offers a new dimension to echocardiography: it measures myocardial stiffness. Therefore, it could provide additional insights into the pathophysiology of cardiac diseases affecting myocardial stiffness and potentially improve diagnosis or guide patient treatment. The technique detects fast mechanical waves on the heart wall with high frame rate echography, and converts their propagation velocity into a stiffness value. A proper interpretation of shear wave data is required as the shear wave interacts with the intrinsic, yet dynamically changing geometrical and material characteristics of the heart under pressure. This dramatically alters the wave physics of the propagating wave, demanding adapted processing methods compared to other shear wave elastography applications as breast tumor and liver stiffness staging. Furthermore, several advanced analysis methods have been proposed to extract supplementary material features such as viscosity and anisotropy, potentially offering additional diagnostic value. This review explains the general mechanical concepts underlying cardiac shear wave elastography and provides an overview of the preclinical and clinical studies within the field. We also identify the mechanical and technical challenges ahead to make shear wave elastography a valuable tool for clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.