Let G be an embedded planar graph whose edges may be curves. For two arbitrary points of G, we can compare the length of the shortest path in G connecting them against their Euclidean distance. The supremum of all these ratios is called the geometric dilation of G. Given a finite point set, we would like to know the smallest possible dilation of any graph that contains the given points. In this paper we prove that a dilation of 1.678 is always sufficient, and that π/2 = 1.570 . . . is sometimes necessary in order to accommodate a finite set of points.
The detour between two points u and v (on edges or vertices) of an embedded
planar graph whose edges are curves is the ratio between the shortest path in
in the graph between u and v and their Euclidean distance. The maximum detour
over all pairs of points is called the geometric dilation. Ebbers-Baumann,
Gruene and Klein have shown that every finite point set is contained in a
planar graph whose geometric dilation is at most 1.678, and some point sets
require graphs with dilation at least pi/2 = 1.57... We prove a stronger lower
bound of 1.00000000001*pi/2 by relating graphs with small dilation to a problem
of packing and covering the plane by circular disks.
The proof relies on halving pairs, pairs of points dividing a given closed
curve C in two parts of equal length, and their minimum and maximum distances h
and H. Additionally, we analyze curves of constant halving distance (h=H),
examine the relation of h to other geometric quantities and prove some new
dilation bounds.Comment: 31 pages, 16 figures. The new version is the extended journal
submission; it includes additional material from a conference submission
(ref. [6] in the paper
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.