Building on our ability to design and synthesise molecules and our understanding of the noncovalent interactions between these molecules, the chemical sciences are currently entering the new territory of Systems Chemistry. This young field aims to develop complex molecular systems showing emergent properties; i.e. properties that go beyond the sum of the characteristics of the individual consituents of the system. This review gives an impression of the state of the art of the field by showing a diverse number of recent highlights, including out-of-equilibrium self-assembly, chemically fuelled molecular motion, compartmentalised chemical networks and designed oscillators. Subsequently a number of current challenges related to the design of complex chemical systems are discussed, including those of creating concurrent formation-destruction systems, continuously maintaining chemical systems away from equilibrium, incorporating feedback loops and pushing replication chemistry away from equilibrium. Finally, the prospects for Systems Chemistry are discussed including the tantalizing vision of the de novo synthesis of life and the idea of self-synthesising and self-repairing chemical factories.
Populations of certain unicellular organisms, such as suspensions of yeast in nutrient solutions, undergo transitions to coordinated activity with increasing cell density. The collective behavior is believed to arise through communication by chemical signaling via the extracellular solution. We studied large, heterogeneous populations of discrete chemical oscillators (approximately 100,000) with well-defined kinetics to characterize two different types of density-dependent transitions to synchronized oscillatory behavior. For different chemical exchange rates between the oscillators and the surrounding solution, increasing oscillator density led to (i) the gradual synchronization of oscillatory activity, or (ii) the sudden "switching on" of synchronized oscillatory activity. We analyze the roles of oscillator density and exchange rate of signaling species in these transitions with a mathematical model of the interacting chemical oscillators.
The bell-shaped rate-pH curve coupled to production of base in the urea-urease reaction was utilized to give feedback-driven behavior: an acid-to-base pH clock (a kinetic switch), bistability and hysteresis between an acid/base state when the initial pH was adjusted by a strong acid, and aperiodic pH oscillations when the initial pH was adjusted by a weak acid in an open reactor. A simple model of the reaction reproduced most of the experimental results and provided insight into the role of self-buffering in the dynamics. This reaction suggests new possibilities in the development of biocompatible feedback to couple to pH-sensitive processes for bioinspired applications in medicine, engineering, or materials science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.