Voltage-gated Ca2+ channels are critical for the development and mature function of the nervous system. Variants in the CACNA2D4 gene encoding the α2δ-4 auxiliary subunit of these channels are associated with neuropsychiatric and neurodevelopmental disorders. α2δ-4 is prominently expressed in the retina and is crucial for vision, but extra-retinal functions of α2δ-4 have not been investigated. Here, we sought to fill this gap by analyzing the behavioral phenotypes of α2δ-4 knockout (KO) mice. α2δ-4 KO mice (both males and females) exhibited significant impairments in prepulse inhibition that were unlikely to result from the modestly elevated auditory brainstem response thresholds. Whereas α2δ-4 KO mice of both sexes were hyperactive in various assays, only females showed impaired motor coordination in the rotarod assay. α2δ-4 KO mice exhibited anxiolytic and anti-depressive behaviors in the elevated plus maze and tail suspension tests, respectively. Our results reveal an unexpected role for α2δ-4 in sensorimotor gating and motor function and identify α2δ-4 KO mice as a novel model for studying the pathophysiology associated with CACNA2D4 variants.
The gene CACNA1C, which encodes the pore forming subunit of the L-type calcium channel CaV1.2, is associated with increased risk for neuropsychiatric disorders including schizophrenia, autism spectrum disorder, major depression, and bipolar disorder. Previous rodent work identified that loss or reduction of CaV1.2 results in cognitive, affective, and motor deficits. Most previous work has either included non-neuronal cell populations (haploinsufficient and Nestin-Cre) or investigated a discrete neuronal cell population (e.g. CaMKII-Cre, Drd1-Cre), but few studies have examined the effects of more broad neuron-specific deletion of CaV1.2. Additionally, most of these studies did not evaluate for sex-specific effects or used only male animals. Here, we sought to clarify whether there are sex-specific behavioral consequences of neuron-specific deletion of CaV1.2 (neuronal CaV1.2 cKO) using Syn1-Cre-mediated conditional deletion. We found that neuronal CaV1.2 cKO mice have normal baseline locomotor function but female cKO mice display impaired motor performance learning. Male neuronal CaV1.2 cKO display impaired startle response with intact pre-pulse inhibition. Male neuronal CaV1.2 cKO mice did not display normal social preference, whereas female neuronal CaV1.2 cKO mice did. Neuronal CaV1.2 cKO mice displayed impaired associative learning in both sexes, as well as normal anxiety-like behavior and hedonic capacity. We conclude that deletion of neuronal CaV1.2 alters motor performance, acoustic startle reflex, and social behaviors in a sex-specific manner, while associative learning deficits generalize across sexes. Our data provide evidence for both sex-specific and sex-independent phenotypes related to neuronal expression of CaV1.2.
The gene CACNA1C, which encodes the L-type calcium channel CaV1.2, is associated with increased risk for neuropsychiatric disorders including schizophrenia, autism spectrum disorder, major depression, and bipolar disorder. Previous rodent work identified that loss or reduction of CaV1.2 results in cognitive, affective, and motor deficits. However, it is unclear if the phenotypes described in these studies result from loss of CaV1.2 from neurons or other central nervous system cell types. Additionally, most of these studies did not evaluate for sex-specific effects or used only male animals. Here, we sought to clarify whether there are sex-specific behavioral consequences of neuron-specific deletion of CaV1.2 (neuronal CaV1.2 cKO). We found that neuronal CaV1.2 cKO mice have normal baseline locomotor function but female cKO mice display impaired motor performance learning. Male neuronal CaV1.2 cKO display impaired startle response with intact pre-pulse inhibition. Male neuronal CaV1.2 cKO mice did not display normal social preference, whereas female neuronal CaV1.2 cKO mice did. In agreement with previous work, neuronal CaV1.2 cKO mice displayed impaired associative learning in both sexes, as well as normal anxiety-like behavior and hedonic capacity. We conclude that deletion of neuronal CaV1.2 alters motor performance, acoustic startle reflex, and social behaviors in a sex-specific manner, while associative learning deficits generalize across sexes. Our data provide evidence for both sex-specific and sex-independent phenotypes related to neuronal expression of CaV1.2.
Voltage-gated Cav Ca2+ channels are critical for the development and mature function of the nervous system. Variants in the CACNA2D4 gene encoding the a2d-4 auxiliary subunit of these channels are associated with neuropsychiatric and neurodevelopmental disorders. a2d-4 is prominently expressed in the retina and is crucial for vision, but extra-retinal functions of a2d-4 have not been investigated. Here, we sought to fill this gap by analyzing the behavioral phenotypes of a2d-4 knockout (KO) mice. a2d-4 KO mice (both males and females) exhibited significant impairments in prepulse inhibition that were unlikely to result from the modestly elevated auditory brainstem response thresholds. Whereas a2d-4 KO mice of both sexes were hyperactive in various assays, only females showed impaired motor learning/coordination in the rotarod assay. Female but not male a2d-4 KO mice exhibited anxiolytic and anti-depressive behaviors in the elevated plus maze and tail suspension tests, respectively. Our results reveal an unexpected role for a2d-4 in cognitive and motor function and identify a2d-4 KO mice as a novel model for studying the pathophysiology associated with CACNA2D4 variants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.