1. Below-ground resource partitioning is among the most prominent hypotheses for driving the positive biodiversity-ecosystem function relationship. However, experimental tests of this hypothesis in biodiversity experiments are scarce, and the available evidence is not consistent.2. We tested the hypothesis that resource partitioning in space, in time or in both space and time combined drives the positive effect of diversity on both plant productivity and total community resource uptake. At the community level, we predicted that total community resource uptake and biomass production above-and below-ground will increase with increased species richness or functional group richness. We predicted that, at the species level, resource partition breadth will become narrower, and that overlap between the resource partitions of different species will become smaller with increasing species richness or functional group richness.3. We applied multiple resource tracers (Li and Rb as potassium analogues, the water isotopologues-H 2 18 O and 2 H 2 O, and 15 N) in three seasons at two depths across a species and functional group richness gradient at a grassland biodiversity experiment. We used this multidimensional resource tracer study to test if plant species partition resources with increasing plant diversity across space, time or both simultaneously.Additional Supporting Information may be found online in the supporting information tab for this article.How to cite this article: Jesch A, Barry KE, Ravenek JM, et al.Below-ground resource partitioning alone cannot explain the biodiversity-ecosystem function relationship: A field test using multiple tracers.
The functioning and service provisioning of ecosystems in the face of anthropogenic environmental and biodiversity change is a cornerstone of ecological research. The last three decades of biodiversity–ecosystem functioning (BEF) research have provided compelling evidence for the significant positive role of biodiversity in the functioning of many ecosystems. Despite broad consensus of this relationship, the underlying ecological and evolutionary mechanisms have not been well understood. This complicates the transition from a description of patterns to a predictive science. The proposed Research Unit aims at filling this gap of knowledge by applying novel experimental and analytical approaches in one of the longest-running biodiversity experiments in the world: the Jena Experiment. The central aim of the Research Unit is to uncover the mechanisms that determine BEF relationships in the short- and in the long-term. Increasing BEF relationships with time in long-term experiments do not only call for a paradigm shift in the appreciation of the relevance of biodiversity change, they likely are key to understanding the mechanisms of BEF relationships in general. The subprojects of the proposed Research Unit fall into two tightly linked main categories with two research areas each that aim at exploring variation in community assembly processes and resulting differences in biotic interactions as determinants of the long-term BEF relationship. Subprojects under “Microbial community assembly” and “Assembly and functions of animal communities” mostly focus on plant diversity effects on the assembly of communities and their feedback effects on biotic interactions and ecosystem functions. Subprojects under “Mediators of plant-biotic interactions” and “Intraspecific diversity and micro-evolutionary changes” mostly focus on plant diversity effects on plant trait expression and micro-evolutionary adaptation, and subsequent feedback effects on biotic interactions and ecosystem functions. This unification of evolutionary and ecosystem processes requires collaboration across the proposed subprojects in targeted plant and soil history experiments using cutting-edge technology and will produce significant synergies and novel mechanistic insights into BEF relationships. The Research Unit of the Jena Experiment is uniquely positioned in this context by taking an interdisciplinary and integrative approach to capture whole-ecosystem responses to changes in biodiversity and to advance a vibrant research field.
Numerous experiments have shown positive diversity effects on plant productivity, but little is known about related processes of carbon gain and allocation. We investigated these processes in a controlled environment (Montpellier European Ecotron) applying a continuous 13CO2 label for three weeks to 12 soil-vegetation monoliths originating from a grassland biodiversity experiment (Jena Experiment) and representing two diversity levels (4 and 16 sown species). Plant species richness did not affect community- and species-level 13C abundances neither in total biomass nor in non-structural carbohydrates (NSC). Community-level 13C excess tended to be higher in the 16-species than in the 4-species mixtures. Community-level 13C excess was positively related to canopy leaf nitrogen (N), i.e. leaf N per unit soil surface. At the species level, shoot 13C abundances varied among plant functional groups and were larger in legumes and tall herbs than in grasses and small herbs, and correlated positively with traits as leaf N concentrations, stomatal conductance and shoot height. The 13C abundances in NSC were larger in transport sugars (sucrose, raffinose-family oligosaccharides) than in free glucose, fructose and compounds of the storage pool (starch) suggesting that newly assimilated carbon is to a small portion allocated to storage. Our results emphasize that the functional composition of communities is key in explaining carbon assimilation in grasslands.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Numerous experiments have shown positive diversity effects on plant productivity, but little is known about related processes of carbon gain and allocation. We investigated these processes in a controlled environment (Montpellier European Ecotron) applying a continuous 13CO2 label for three weeks to 12 soil-vegetation monoliths originating from a grassland biodiversity experiment (Jena Experiment) and representing two diversity levels (4 and 16 sown species). Plant species richness did not affect community- and species-level 13C abundances neither in total biomass nor in non-structural carbohydrates (NSC). Community-level 13C excess tended to be higher in the 16-species than in the 4-species mixtures. Community-level 13C excess was positively related to canopy leaf nitrogen (N), i.e. leaf N per unit soil surface. At the species level shoot 13C abundances varied among plant functional groups and were larger in legumes and tall herbs than in grasses and small herbs and correlated positively with traits as leaf N concentrations, stomatal conductance and shoot height. The 13C abundances in NSC were larger in transport sugars (sucrose, raffinose-family oligosaccharides) than in free glucose, fructose and compounds of the storage pool (starch) suggesting that newly assimilated carbon is to a small portion allocated to storage. Our results emphasize that the functional composition of communities is key in explaining carbon assimilation in grasslands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.