Summary1. Macroclimatic variation along latitudinal gradients provides an excellent natural laboratory to investigate the role of temperature and the potential impacts of climate warming on terrestrial organisms. 2. Here, we review the use of latitudinal gradients for ecological climate change research, in comparison with altitudinal gradients and experimental warming, and illustrate their use and caveats with a meta-analysis of latitudinal intraspecific variation in important life-history traits of vascular plants. 3. We first provide an overview of latitudinal patterns in temperature and other abiotic and biotic environmental variables in terrestrial ecosystems. We then assess the latitudinal intraspecific variation present in five key life-history traits [plant height, specific leaf area (SLA), foliar nitrogen: phosphorus (N:P) stoichiometry, seed mass and root:shoot (R:S) ratio] in natural populations or common garden experiments across a total of 98 plant species. 4. Intraspecific leaf N:P ratio and seed mass significantly decreased with latitude in natural populations. Conversely, the plant height decreased and SLA increased significantly with latitude of population origin in common garden experiments. However, less than a third of the investigated latitudinal transect studies also formally disentangled the effects of temperature from other environmental drivers which potentially hampers the translation from latitudinal effects into a temperature signal. 5. Synthesis. Latitudinal gradients provide a methodological set-up to overcome the drawbacks of other observational and experimental warming methods. Our synthesis indicates that many lifehistory traits of plants vary with latitude but the translation of latitudinal clines into responses to temperature is a crucial step. Therefore, especially adaptive differentiation of populations and confounding environmental factors other than temperature need to be considered. More generally, integrated approaches of observational studies along temperature gradients, experimental methods and common garden experiments increasingly emerge as the way forward to further our understanding of species and community responses to climate warming.
Summary1 Disturbance may cause community composition across sites to become more or less homogenous, depending on the importance of different processes involved in community assembly. In north-eastern North America and Europe local (alpha) diversity of forest plants is lower in forests growing on former agricultural fields (recent forests) than in older (ancient) forests, but little is known about the influence of land-use history on the degree of compositional differentiation among sites (beta diversity). 2 Here we analyse data from 1446 sites in ancient and recent forests across 11 different landscapes in north-eastern North America and Europe to demonstrate decreases in beta diversity and in the strength of species-environment relationships in recent vs. ancient forests. 3 The magnitude of environmental variability among sites did not differ between the two forest types. This suggests the difference in beta diversity between ancient and recent forests was not due to different degrees of environmental heterogeneity, but rather to dispersal filters that constrain the pool of species initially colonizing recent forests. 4 The observed effects of community homogenization and weakened relationships between species distributions and environmental gradients appear to persist for decades or longer. The legacy of human land-use history in spatial patterns of biodiversity may endure, both within individual sites and across sites, for decades if not centuries.
Following habitat fragmentation individual habitat patches may lose species over time as they pay off their "extinction debt." Species with relatively low rates of population extinction and colonization ("slow" species) may maintain extinction debts for particularly prolonged periods, but few data are available to test this prediction. We analyzed two unusually detailed data sets on forest plant distributions and land-use history from Lincolnshire, United Kingdom, and Vlaams-Brabant, Belgium, to test for an extinction debt in relation to species-specific extinction and colonization rates. Logistic regression models predicting the presence-absence of 36 plant species were first parameterized using data from Lincolnshire, where forest cover has been relatively low (approximately 5-8%) for the past 1000 years. Consistent with extinction debt theory, for relatively slow species (but not fast species) these models systematically underpredicted levels of patch occupancy in Vlaams-Brabant, where forest cover was reduced from approximately 25% to <10% between 1775 and 1900 (it is presently 6.5%). As a consequence, the ability of the Lincolnshire models to predict patch occupancy in Vlaams-Brabant was worse for slow than for fast species. Thus, more than a century after forest fragmentation reached its current level an extinction debt persists for species with low rates of population turnover.
Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species’ threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project – and avert – future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups – including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems – http://www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.