Most of the native forage species, dominant in upland grassland, were able to survive and recover from extreme drought, but with various time lags. Overall the results suggest that the wide range of interspecific functional strategies for coping with drought may enhance the resilience of upland grassland plant communities under extreme drought events.
The study of carbohydrate metabolism in perennial ryegrass (Lolium perenne L. cv. Bravo) during the first 48 h of regrowth showed that fructans from elongating leaf bases were hydrolysed first whereas fructans in mature leaf sheaths were degraded only after a lag of 1.5 h. In elongating leaf bases, the decline in fructan content occurred not only in the differentiation zone (30-60 mm from the leaf base), but also in the growth zone. Unlike other soluble carbohydrates, the net deposition rate of fructose remained positive and even rose during the first day following defoliation. The activity of fructan exohydrolase (FEH; EC 3.2.1.80) was maximal in the differentiation zone before defoliation and increased in all segments, but peaked in the growth zone after defoliation. These data strongly indicate that fructans stored in the leaf growth zone were hydrolysed and recycled in that zone to sustain the refoliation immediately after defoliation. Despite the depletion of carbohydrates, leaves of defoliated plants elongated at a significantly higher rate than those of undefoliated plants, during the first 10 h of regrowth. This can be partly attributed to the transient increase in water and nitrate deposition rate. The results are discussed in relation to defoliation tolerance.
The aim of this study was to evaluate the putative role of the sucrosyl-galactosides, loliose [␣-d-Gal (1,3) ␣-d-Glc (1,2) -d-Fru] and raffinose 6) ␣-d-Glc (1,2) -d-Fru], in drought tolerance of perennial ryegrass and to compare it with that of fructans. To that end, the loliose biosynthetic pathway was first established and shown to operate by a UDP-Gal: sucrose (Suc) 3-galactosyltransferase, tentatively termed loliose synthase. Drought stress increased neither the concentrations of loliose and raffinose nor the activities of loliose synthase and raffinose synthase (EC 2.4.1.82). Moreover, the concentrations of the raffinose precursors, myoinositol and galactinol, as well as the gene expressions of myoinositol 1-phosphate synthase (EC 5.5.1.4) and galactinol synthase (EC 2.4.1.123) were either decreased or unaffected by drought stress. Taken together, these data are not in favor of an obvious role of sucrosyl-galactosides in drought tolerance of perennial ryegrass at the vegetative stage. By contrast, drought stress caused fructans to accumulate in leaf tissues, mainly in leaf sheaths and elongating leaf bases. This increase was mainly due to the accumulation of long-chain fructans (degree of polymerization Ͼ 8) and was not accompanied by a Suc increase. Interestingly, Suc but not fructan concentrations greatly increased in drought-stressed roots. Putative roles of fructans and sucrosyl-galactosides are discussed in relation to the acquisition of stress tolerance.One of the strategies employed by plants to survive drought stress includes the synthesis of protective compounds, which may act by stabilizing membranes and proteins or mediating osmotic adjustment (Bohnert et al., 1995; Hare et al., 1998; Hoekstra et al., 2001). Included among these protective compounds are the water-soluble carbohydrates (WSCs), Glc, Suc, raffinose, myoinositol, and fructans.Raffinose family oligosaccharides (RFOs) such as raffinose and stachyose accumulate during seed development and are thought to play a role in the desiccation tolerance of seeds (Blackman et al., 1992; Brenac et al., 1997). Raffinose also accumulates in vegetative tissues under drought stress (Taji et al., 2002). RFO biosynthesis requires the presence of galactinol, which is formed by galactinol synthase (GolS; EC 2.4.1.123) from UDP-Gal and myoinositol. Galactinol is the galactosyl donor for the biosynthesis of raffinose from Suc by raffinose synthase (RafS; EC 2.4.1.82). Because galactinol has not been assigned any function in plants other than acting as galactosyl donor for RFOs synthesis, GolS potentially catalyzes a metabolic key step for RFO synthesis. In a recent study, two drought-responsive GolS genes were identified among seven in Arabidopsis (Taji et al., 2002). Overexpression of one of them caused an increase in endogenous galactinol and raffinose as well as an improvement in drought tolerance.In addition to GolS, myoinositol 1-phosphate synthase (INPS; EC 5.5.1.4) is another enzyme that may control the levels of galactinol and raffinose. It repr...
The relative significance of the use of stored or currently absorbed C for the growth of leaves or roots of Lolium perenne L. after defoliation was assessed by steady‐state labelling of atmospheric CO2. Leaf growth for the first two days after defoliation was to a large extent dependent on the use of C reserves. The basal part of the elongating leaves was mainly new tissue and 91% of the C in this part of the leaf was derived from reserves assimilated prior to defoliation. However, half of the sucrose in the growth zone was produced from photosynthesis by the emerged leaves. Fructans that were initially present in elongating leaf bases were hydrolysed (loss of 93 to 100%) and the resulting fructose was found in the new leaf bases, suggesting that this pool may be used to support cell division and elongation. Despite a negative C balance at the whole‐plant level, fructans were synthesized from sucrose that was translocated to the new leaf bases. After a regrowth period of 28 d, 45% of the C fixed before defoliation was still present in the root and leaf tissue and only 1% was incorporated in entirely new tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.