A fast track "Hot Start" process was implemented to launch the European Bank for Induced Pluripotent Stem Cells (EBiSC) to provide early release of a range of established control and disease linked human induced pluripotent stem cell (hiPSC) lines. Established practice amongst consortium members was surveyed to arrive at harmonised and publically accessible Standard Operations Procedures (SOPs) for tissue procurement, bio-sample tracking, iPSC expansion, cryopreservation, qualification and distribution to the research community. These were implemented to create a quality managed foundational collection of lines and associated data made available for distribution. Here we report on the successful outcome of this experience and work flow for banking and facilitating access to an otherwise disparate European resource, with lessons to benefit the international research community. ETOC: The report focuses on the EBiSC experience of rapidly establishing an operational capacity to procure, bank and distribute a foundational collection of established hiPSC lines. It validates the feasibility and defines the challenges of harnessing and integrating the capability and productivity of centres across Europe using commonly available resources currently in the field.
Endocrine disruptors (EDs) are chemicals that contribute to health problems by interfering with the physiological production and target effects of hormones, with proven impacts on a number of endocrine systems including the thyroid gland. Exposure to EDs has also been associated with impairment of the reproductive system and incidence in occurrence of obesity, type 2 diabetes, and cardiovascular diseases during ageing. SCREENED aims at developing in vitro assays based on rodent and human thyroid cells organized in three different three-dimensional (3D) constructs. Due to different levels of anatomical complexity, each of these constructs has the potential to increasingly mimic the structure and function of the native thyroid gland, ultimately achieving relevant features of its 3D organization including: (1) a 3D organoid based on stem cell-derived thyrocytes, (2) a 3D organoid based on a decellularized thyroid lobe stromal matrix repopulated with stem cell-derived thyrocytes, and (3) a bioprinted organoid based on stem cell-derived thyrocytes able to mimic the spatial and geometrical features of a native thyroid gland. These 3D constructs will be hosted in a modular microbioreactor equipped with innovative sensing technology and enabling precise control of cell culture conditions. New superparamagnetic biocompatible and biomimetic particles will be used to produce “magnetic cells” to support precise spatiotemporal homing of the cells in the 3D decellularized and bioprinted constructs. Finally, these 3D constructs will be used to screen the effect of EDs on the thyroid function in a unique biological sex-specific manner. Their performance will be assessed individually, in comparison with each other, and against in vivo studies. The resulting 3D assays are expected to yield responses to low doses of different EDs, with sensitivity and specificity higher than that of classical 2D in vitro assays and animal models. Supporting the “Adverse Outcome Pathway” concept, proteogenomic analysis and biological computational modelling of the underlying mode of action of the tested EDs will be pursued to gain a mechanistic understanding of the chain of events from exposure to adverse toxic effects on thyroid function. For future uptake, SCREENED will engage discussion with relevant stakeholder groups, including regulatory bodies and industry, to ensure that the assays will fit with purposes of ED safety assessment. In this project review, we will briefly discuss the current state of the art in cellular assays of EDs and how our project aims at further advancing the field of cellular assays for EDs interfering with the thyroid gland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.