Summary Neutrophils display distinct gene expression patters depending on their developmental stage, activation state and tissue microenvironment. To determine the transcription factor networks that shape these responses in a mouse model, we integrated transcriptional and chromatin analyses of neutrophils during acute inflammation. We show active chromatin remodelling at two transition stages: bone marrow-to-blood and blood-to-tissue. Analysis of differentially accessible regions revealed distinct sets of putative transcription factors associated with control of neutrophil inflammatory responses. Using ex vivo and in vivo approaches, we confirmed that RUNX1 and KLF6 modulate neutrophil maturation, whereas RELB, IRF5 and JUNB drive neutrophil effector responses, and RFX2 and RELB promote survival. Interfering with neutrophil activation by targeting one of these factors, JUNB, reduced pathological inflammation in a mouse model of myocardial infarction. Our study therefore represents a blueprint for transcriptional control of neutrophil responses in acute inflammation and opens possibilities for stage-specific therapeutic modulation of neutrophil function in disease.
Heart failure due to dilated cardiomyopathy is frequently caused by myocarditis. However, the pathogenesis of myocarditis remains incompletely understood. Here, we report the presence of neutrophil extracellular traps (NETs) in cardiac tissue of patients and mice with myocarditis. Inhibition of NET formation in experimental autoimmune myocarditis (EAM) of mice substantially reduces inflammation in the acute phase of the disease. Targeting the cytokine midkine (MK), which mediates NET formation in vitro, not only attenuates NET formation in vivo and the infiltration of polymorphonuclear neutrophils (PMNs) but also reduces fibrosis and preserves systolic function during EAM. Low-density lipoprotein receptor–related protein 1 (LRP1) acts as the functionally relevant receptor for MK-induced PMN recruitment as well as NET formation. In summary, NETosis substantially contributes to the pathogenesis of myocarditis and drives cardiac inflammation, probably via MK, which promotes PMN trafficking and NETosis. Thus, MK as well as NETs may represent novel therapeutic targets for the treatment of cardiac inflammation.
Neutrophil extravasation and interstitial migration are important steps during the recruitment of neutrophils to sites of inflammation. In the present study, we addressed the functional importance of the unconventional class I myosin 1f (Myo1f) for neutrophil trafficking during acute inflammation. In contrast to leukocyte rolling and adhesion, the genetic absence of severely compromised neutrophil extravasation into the inflamed mouse cremaster tissue when compared with mice as studied by intravital microscopy. Similar results were obtained in experimental models of acute peritonitis and acute lung injury. In contrast to 2-dimensional migration, which occurred independently of Myo1f, Myo1f was indispensable for neutrophil migration in 3-dimensional (3D) environments, that is, transmigration and migration in collagen networks as it regulated squeezing and dynamic deformation of the neutrophil nucleus during migration through physical barriers. Thus, we provide evidence for an important role of Myo1f in neutrophil trafficking during inflammation by specifically regulating neutrophil extravasation and migration in 3D environments.
Neutrophils are the first leukocytes to arrive at sites of injury during the acute inflammatory response. To maintain the polarized morphology during migration, nonmuscle myosins class II are essential, but studies using genetic models to investigate the role of Myh9 for neutrophil migration were missing. In this study, we analyzed the functional role of Myh9 on neutrophil trafficking using genetic downregulation of Myh9 in mice because the complete knockout of in the hematopoietic system was lethal. Migration velocity and Euclidean distance were significantly diminished during mechanotactic migration of neutrophils compared with control neutrophils. Similar results were obtained for transmigration and migration in confined three-dimensional environments. Stimulated emission depletion nanoscopy revealed that a certain threshold of Myh9 was required to maintain proper F-actin dynamics in the front of the migrating cell. In laser-induced skin injury and in acute peritonitis, reduced Myh9 expression in the hematopoietic system resulted in significantly diminished neutrophil extravasation. Investigation of bone marrow chimeric mice in the peritonitis model revealed that the migration defect was cell intrinsic. Expression of Myh9-EGFP rescued the Myh9-related defects in two-dimensional and three-dimensional migration of Hoxb8-SCF cell-derived neutrophils generated from fetal liver cells with a Myh9 knockdown. Live cell imaging provided evidence that Myh9 was localized in branching lamellipodia and in the uropod where it may enable fast neutrophil migration. In summary, the severe migration defects indicate an essential and fundamental role of Myh9 for neutrophil trafficking in innate immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.