A major complication in hybrid QM/MM methods is the treatment of the frontier between the quantum part, describing the reactive region, and the classical part, describing the environment. Two approaches to this problem, the “link atom” method and the “local self-consistent field” (LSCF) formalism, are compared in this paper. For this purpose, the LSCF formalism has been introduced into the CHARMM program. A detailed description of the two approaches is presented. The results of semiempirical calculations of deprotonation enthalpies and proton affinities of propanol and a tripeptide with different treatments of the frontier bond are compared. Particular emphasis is placed on the effect of an external charge. It is shown that the choice of the QM/MM electronic interactions included in the frontier region is of considerable importance in determining the electron distribution of the QM region and the overall energy. The link atom and LSCF methods are generally of similar accuracy if care is taken in the choice of the frontier between the QM and MM regions. QM and QM/MM geometry optimizations of ethane and butane are also compared. The introduction of a link atom in the frontier bond is shown to lead to distortions of the internal coordinates unless the frontier bond is treated in a special way. A number of practical points concerning the choice of the frontier between the QM and MM regions are presented. It is not advisable to remove classical charges from the interactions with a subset of the quantum atoms, as this can introduce significant errors in the energy computations. The presence of a large charge on the classical atom involved in the QM/MM frontier also adversely influences the energy, especially with the LSCF method, and it is therefore advised to select classical frontier atoms with small charges. Charged atoms which are not directly bound to the QM frontier but which are in its proximity are also shown to be a source of errors, and it is advised to introduce warning messages in QM-MM codes when such a situation arises.
Knowledge of the pK(a) of phosphoranes is important for the interpretation of phosphate ester hydrolysis. Calculated pK(a)'s of the model phosphorane, ethylene phosphorane, are reported. The method of calculation is based on the use of dimethyl phosphate as a reference state for evaluating relative pK(a) values, and on the optimization of the oxygen and acidic hydrogen van der Waals radii to give reasonable pK(1)(a), pK(2)(a), and pK(3)(a) for phosphoric acid in solution. Density functional theory is employed to calculate the gas-phase protonation energies, and continuum dielectric methods are used to determine the solvation corrections. The calculated pK(1)(a) and p(2)(a) for the model phosphorane are 7.9 and 14.3, respectively. These values are within the range of proposed experimental values, 6.5-11.0 for pK(1)(a), and 11.3-15.0 for pK(2)(a). The mechanistic implications of the calculated pK(a)'s are discussed.
Phosphorus has a broad role in living systems, and so the reactions of phosphate esters in solution and in enzymes are of great interest.* 1 The classic work on the hydrolysis of phosphates by Westheimer and co-workers2 showed that five-memberedring compounds (e.g., ethylene phosphate (EP)) are hydrolyzed 106 789*-10s times faster than acyclic compounds (e.g., dimethyl phosphate, DMP).3 This difference has been ascribed to groundstate destabilization arising from strain in the cyclic reactant, which is releaved in the trigonal bipyramidal transition state.2•4 In this communication, we use gas-phase ab initio calculations to show that although there is strain in the ground state of the cyclic reactant, it does not contribute to the rate acceleration. Further, an estimate of solvation effects from a continuum model suggests that most of the rate acceleration of the cyclic versus the acyclic phosphates arises from differential solvation of the transition states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.