The high rates of embryonic mortalities which follow in vitro production of ruminant embryos have emphasized the need for increased knowledge of early development. It is likely that early failures in embryonic development and placenta formation involve abnormal differentiation of mesoderm. The aim of this study was to investigate the pattern of expression of two T-box genes known to control the gastrulation process, Brachyury and Eomesodermin, by whole-mount in situ hybridization. To allow a more precise comparison of both expression patterns between embryos, we describe a new staging of pre-implanted ovine embryos by gross morphology and histology from pre-gastrulation stages to the beginning of neurulation. In pre-streak embryos primitive mesoderm cells delaminated in between the primitive endoderm and the epiblast. At that stage, no expression of Brachyury or Eomesodermin could be detected in the embryos. Early expression of both T-genes was observed by the early-streak stages in epiblast cells located close to the presumptive posterior pole of the embryos. Later on, during gastrulation both genes followed a pattern of expression similar to the ones described in other mammals. These observations suggest that other genes, which remain to be identified, are responsible for extra-embryonic mesoderm differentiation in ruminant embryos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.