Syncytia are formed when individual cells fuse. SARS-CoV-2 induces syncytia when the viral spike (S) protein on the surface of an infected cell interacts with receptors on neighboring cells. Syncytia may potentially contribute to pathology by facilitating viral dissemination, cytopathicity, immune evasion, and inflammatory response. SARS-CoV-2 variants of concern possess several mutations within the S protein that enhance receptor interaction, fusogenicity and antibody binding. In this review, we discuss the molecular determinants of S mediated fusion and the antiviral innate immunity components that counteract syncytia formation. Several interferon-stimulated genes, including IFITMs and LY6E act as barriers to S protein-mediated fusion by altering the composition or biophysical properties of the target membrane. We also summarize the effect that the mutations associated with the variants of concern have on S protein fusogenicity. Altogether, this review contextualizes the current understanding of Spike fusogenicity and the role of syncytia during SARS-CoV-2 infection and pathology.
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression at the post-transcriptional level. Through this activity, they are implicated in almost every cellular process investigated to date. Hence, it is not surprising that miRNAs play diverse roles in regulation of viral infections and antiviral responses. Diverse families of DNA and RNA viruses have been shown to take advantage of cellular miRNAs or produce virally encoded miRNAs that alter host or viral gene expression. MiRNA-mediated changes in gene expression have been demonstrated to modulate viral replication, antiviral immune responses, viral latency, and pathogenesis. Interestingly, viruses mediate both canonical and non-canonical interactions with miRNAs to downregulate specific targets or to promote viral genome stability, translation, and/or RNA accumulation. In this review, we focus on recent findings elucidating several key mechanisms employed by diverse virus families, with a focus on miRNAs at the host–virus interface during herpesvirus, polyomavirus, retroviruses, pestivirus, and hepacivirus infections.
BackgroundWe previously demonstrated that primary Th1Th17 cells are highly permissive to HIV-1, whereas Th1 cells are relatively resistant. Molecular mechanisms underlying these differences remain unknown.ResultsExposure to replication competent and single-round VSV-G pseudotyped HIV strains provide evidence that superior HIV replication in Th1Th17 vs. Th1 cells was regulated by mechanisms located at entry and post-entry levels. Genome-wide transcriptional profiling identified transcripts upregulated (n = 264) and downregulated (n = 235) in Th1Th17 vs. Th1 cells (p-value < 0.05; fold change cut-off 1.3). Gene Set Enrichment Analysis revealed pathways enriched in Th1Th17 (nuclear receptors, trafficking, p38/MAPK, NF-κB, p53/Ras, IL-23) vs. Th1 cells (proteasome, interferon α/β). Differentially expressed genes were classified into biological categories using Gene Ontology. Th1Th17 cells expressed typical Th17 markers (IL-17A/F, IL-22, CCL20, RORC, IL-26, IL-23R, CCR6) and transcripts functionally linked to regulating cell trafficking (CEACAM1, MCAM), activation (CD28, CD40LG, TNFSF13B, TNFSF25, PTPN13, MAP3K4, LTB, CTSH), transcription (PPARγ, RUNX1, ATF5, ARNTL), apoptosis (FASLG), and HIV infection (CXCR6, FURIN). Differential expression of CXCR6, PPARγ, ARNTL, PTPN13, MAP3K4, CTSH, SERPINB6, PTK2, and ISG20 was validated by RT-PCR, flow cytometry and/or confocal microscopy. The nuclear receptor PPARγ was preferentially expressed by Th1Th17 cells. PPARγ RNA interference significantly increased HIV replication at levels post-entry and prior HIV-DNA integration. Finally, the activation of PPARγ pathway via the agonist Rosiglitazone induced the nuclear translocation of PPARγ and a robust inhibition of viral replication.ConclusionsThus, transcriptional profiling in Th1Th17 vs. Th1 cells demonstrated that HIV permissiveness is associated with a superior state of cellular activation and limited antiviral properties and identified PPARγ as an intrinsic negative regulator of viral replication. Therefore, triggering PPARγ pathway via non-toxic agonists may contribute to limiting covert HIV replication and disease progression during antiretroviral treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.