Abstract:We have shown previously that the pattern of expression of the transcription factor CREB (cyclic AMPresponse element binding protein) in developing oligodendrocytes (OLGs) suggests a role during a period that precedes the peak of myelination in rat brain. We have now investigated the signaling pathways that could be responsible for activating CREB by phosphorylation at different stages along OLG maturation. CREB phosphorylation was studied in short-term cultures of immature OLG precursor cells and young OLGs isolated from 4-and 11-day-old rat cerebrum, respectively. The results indicated that at both developmental stages, CREB phosphorylation could be stimulated by either increased concentrations of cyclic AMP and cyclic AMP-dependent protein kinase activation or increased Ca 2ϩ levels and a protein kinase C activity. The results also showed that CREB phosphorylation in immature OLG precursor cells could be up-regulated by treatment with histamine, carbachol, glutamate, and ATP (neuroligands known to increase Ca 2ϩ levels in these cells), by signaling cascade(s) that involve a protein kinase C activity, as well as the mitogen-activated protein kinase pathway. In contrast, in cells isolated from 11-day-old rats, at a developmental stage that immediately precedes the beginning of the active period of myelin synthesis, CREB phosphorylation was only stimulated by treatment with the -adrenergic agonist isoproterenol in a process that appears to be mediated by a cyclic AMP/cyclic AMP-dependent protein kinase-dependent pathway. These results support the idea that CREB could be a mediator of neuronal signals that, coupled to specific signal transduction cascades, may play different regulatory roles at specific stages along OLG differentiation.
Abstract:We have previously shown that the transcription factor CREB (cyclic AMP-response element binding protein) could be a mediator of neuronal signals that, coupled to different signal transduction pathways, may play different regulatory roles at specific stages of oligodendrocyte (OLG) development. We have found before that in committed OLGs, CREB activation by phosphorylation can be triggered by -adrenergic stimulation and appears to play a role in the induction of OLG differentiation by cyclic AMP. In contrast, in OLG precursor cells, CREB phosphorylation is stimulated by neuroligands that increase calcium levels by a process that involves a mitogen-activated protein kinase (MAPK)/protein kinase C (PKC) pathway. This observation suggested that at this early developmental stage, CREB could play a role in regulating cell proliferation. In support of this hypothesis, we have now found that a rapid and dramatic stimulation of CREB phosphorylation is one of the earliest events that precedes the increase in cell proliferation that is observed when OLG precursors are treated with neurotrophin-3 (NT-3). Experiments in which CREB phosphorylation was investigated in the presence of different kinase inhibitors indicated that the activation of this transcription factor in the presence of NT-3 is mediated by the concerted action of MAPK-and PKC-dependent signal transduction pathways. Moreover, our present results also showed that down-regulation of CREB expression in the OLG precursors abolished the increase in DNA synthesis that is observed when the cultures are treated with NT-3. Thus, these results support the idea that in immature OLG precursors, CREB plays an important role in transducing signals which, like NT-3, may regulate cell proliferation. Key Words: Oligodendrocyte proliferation-CREB-Neurotrophin-3.
Our previous results support the idea that CREB (cyclic AMP-response element binding protein) may be a mediator of neuroligand and growth factor signals that, coupled to different signal transduction pathways, play different roles at specific stages of oligodendrocyte development. In the early stages, when cells are immature precursors, CREB may play a role as a mediator of protein kinase C (PKC)/mitogen-activated protein kinase (MAPK) pathways regulating cell proliferation. In contrast, at a later stage, when cells are already committed oligodendrocytes, CREB seems to play an important role as a mediator in the stimulation of myelin basic protein (MBP) expression by cyclic AMP (cAMP). In this study, we have investigated whether cAMP and CREB play a role in regulating the expression of all or on the other hand particular MBP isoforms. The results indicated that treatment of committed oligodendrocytes with the cAMP analogue db-cAMP results in a pattern of expression of MBP-related polypeptides that most closely resembles the pattern of MBPs observed in cerebra from adult animals. Experiments in which CREB expression was inhibited using a CREB antisense oligonucleotide, suggested that CREB is involved in the cAMP-dependent stimulation of all the MBP isoforms. In contrast, we have found that db-cAMP stimulates the expression of myelin proteolipid protein (PLP) in a process that occurs despite inhibition of CREB expression. These results support the idea that cAMP stimulates the maturation of oligodendrocytes and stress the fact multiple mechanisms may convey the action of this second messenger modulating oligodendrocyte differentiation and myelination.
It is well-known that there are multiple forms of DNA polymerase alpha. In order to determine which form(s) is (are) tightly bound, the activities were dissociated from DNA-poor nuclear matrices, with octyl beta-D-glucoside. Sucrose gradient sedimentation analysis revealed three bands with s values of 7.5, 10.5, and 13. The 7.5S form was free of DNA primase and represented only 10% of the total DNA polymerase alpha bound to the nuclear matrix. The 13S and the 10.5S forms each contained DNA primase activity. The 10.5S form comprised 85% of the DNA polymerase alpha activity and 95% of the DNA primase activity, dissociated from the nuclear matrix. Neither temperature of nuclease digestion nor various salt treatments of nuclei had significant effects on the proportions of DNA polymerase alpha and DNA primase activities bound to, or subsequently dissociated from, nuclear matrices. In a comparison of primase activity bound to the nuclear matrix, dissociated from the nuclear matrix, and in the soluble fraction, it was found that the bound activity had a lower ATP dependence, had less KCl inhibition, and was less sensitive to heat, compared to the dissociated and soluble activities. No differences in Mg2+ or pH dependence were noted. The amounts of DNA polymerase alpha and DNA primase activities bound to the nuclear matrix varied over the cell cycle of synchronized cells. Over the S phase, there were two peaks of matrix-bound DNA primase and two peaks of subsequently dissociated DNA polymerase alpha-DNA primase complex.(ABSTRACT TRUNCATED AT 250 WORDS)
It is well known that cell proliferation (and hence, DNA synthesis) declines in human diploid fibroblast-like cells with increasing passage number. It is not clear whether D N A synthesis declines in t h e remaining cells that are still actively proliferating. Estimations of cell kinetic parameters permitted extrapolations to be made that reflected the declining numbers of cells still capable of D N A replication. D N A synthesis declined with culture age in intact cells, permeabilized cells, and in the isolated nuclear matrix even when corrected for declining numbers of proliferating cells. With age, DNA polymerase alpha and beta activity in cell lysates declined, but when corrected for the remaining proliferating cells, only polymerase alpha activity declined; D N A polymerase alpha and beta activity bound to the nuclear matrix declined, but when corrected for declining proliferation, no decline was apparent for either enzyme. There was an increase in the number of S1-nuclease sensitive sites and breaks in the parental DNA of the dividing cells in older cultures. It is suggested that in aging cultures, not only does overall DNA synthesis decline owing to decreasing cell proliferation, but also that D N A synthesis declines in t h e remaining proliferating cells, that this decline is not due to decreasing amounts of D N A polymerase bound to the nuclear matrix, and that alterations in D N A structure occur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.