Mutations within the with-no-K(Lys) (WNK) kinases cause Gordon's syndrome characterized by hypertension and hyperkalaemia. WNK kinases phosphorylate and activate the STE20/SPS1-related proline/alanine-rich kinase (SPAK) protein kinase, which phosphorylates and stimulates the key Na+:Cl− cotransporter (NCC) and Na+:K+:2Cl− cotransporters (NKCC2) cotransporters that control salt reabsorption in the kidney. To define the importance of this pathway in regulating blood pressure, we generated knock-in mice in which SPAK cannot be activated by WNKs. The SPAK knock-in animals are viable, but display significantly reduced blood pressure that was salt-dependent. These animals also have markedly reduced phosphorylation of NCC and NKCC2 cotransporters at the residues phosphorylated by SPAK. This was also accompanied by a reduction in the expression of NCC and NKCC2 protein without changes in messenger RNA (mRNA) levels. On a normal Na+-diet, the SPAK knock-in mice were normokalaemic, but developed mild hypokalaemia when the renin–angiotensin system was activated by a low Na+-diet. These observations establish that SPAK plays an important role in controlling blood pressure in mammals. Our results imply that SPAK inhibitors would be effective at reducing blood pressure by lowering phosphorylation as well as expression of NCC and NKCC2. See accompanying Closeup by Maria Castañeda-Bueno and Gerald Gamba (DOI 10.1002/emmm.200900059).
Renal excretion of water and major electrolytes exhibits a significant circadian rhythm. This functional periodicity is believed to result, at least in part, from circadian changes in secretion/reabsorption capacities of the distal nephron and collecting ducts. Here, we studied the molecular mechanisms underlying circadian rhythms in the distal nephron segments, i.e., distal convoluted tubule (DCT) and connecting tubule (CNT) and the cortical collecting duct (CCD). Temporal expression analysis performed on microdissected mouse DCT/CNT or CCD revealed a marked circadian rhythmicity in the expression of a large number of genes crucially involved in various homeostatic functions of the kidney. This analysis also revealed that both DCT/CNT and CCD possess an intrinsic circadian timing system characterized by robust oscillations in the expression of circadian core clock genes (clock, bma11, npas2, per, cry, nr1d1) and clock-controlled Par bZip transcriptional factors dbp, hlf, and tef. The clock knockout mice or mice devoid of dbp/hlf/tef (triple knockout) exhibit significant changes in renal expression of several key regulators of water or sodium balance (vasopressin V2 receptor, aquaporin-2, aquaporin-4, ␣ENaC). Functionally, the loss of clock leads to a complex phenotype characterized by partial diabetes insipidus, dysregulation of sodium excretion rhythms, and a significant decrease in blood pressure. Collectively, this study uncovers a major role of molecular clock in renal function.circadian rhythm ͉ homeostasis ͉ renal function R ecent evidence suggests that many if not all specific physiological functions are under the control of the circadian timing system. The mammalian circadian timing system is a hierarchically organized network of molecular oscillators driven by a central pacemaker located in the suprachiasmatic nucleus (SCN) of hypothalamus. This central pacemaker functions in a self-sustained fashion, but is reset each day by exposure to environmental synchronizers, mainly the light/dark cycle. The SCN masterclock drives the rest-activity cycle, which in turn imposes the feeding pattern [reviewed in (1, 2)]. The feeding time seems to be the dominant cue for circadian rhythms in the peripheral tissues (3, 4). Central and peripheral oscillators share a similar molecular core clock based on a set of self-autonomous transcriptional/ translational feedback loops. The key molecular components of these loops are the PAS domain transcriptional factors CLOCK, BMAL1, and NPAS2 and the feedback repressors PER1, PER2, CRY1, and CRY2. The orphan nuclear receptors NR1D1 and, probably, NR1D2 form an accessory feedback loop. The core oscillators confer circadian rhythmicity on a set of output genes underlying the tissue-specific functional rhythms. Current estimates indicate that up to 10% of the cellular transcriptome may follow a circadian expression pattern (5-7). Several recent studies have also demonstrated that the transcription of only a minority of these circadian genes is driven by systemic humoral or neurona...
Calcium is vital to the normal functioning of multiple organ systems and its serum concentration is tightly regulated. Apart from CASR, the genes associated with serum calcium are largely unknown. We conducted a genome-wide association meta-analysis of 39,400 individuals from 17 population-based cohorts and investigated the 14 most strongly associated loci in ≤21,679 additional individuals. Seven loci (six new regions) in association with serum calcium were identified and replicated. Rs1570669 near CYP24A1 (P = 9.1E-12), rs10491003 upstream of GATA3 (P = 4.8E-09) and rs7481584 in CARS (P = 1.2E-10) implicate regions involved in Mendelian calcemic disorders: Rs1550532 in DGKD (P = 8.2E-11), also associated with bone density, and rs7336933 near DGKH/KIAA0564 (P = 9.1E-10) are near genes that encode distinct isoforms of diacylglycerol kinase. Rs780094 is in GCKR. We characterized the expression of these genes in gut, kidney, and bone, and demonstrate modulation of gene expression in bone in response to dietary calcium in mice. Our results shed new light on the genetics of calcium homeostasis.
Mutations in ␣, , or ␥ subunits of the epithelial sodium channel (ENaC) can downregulate ENaC activity and cause a severe salt-losing syndrome with hyperkalemia and metabolic acidosis, designated pseudohypoaldosteronism type 1 in humans. In contrast, mice with selective inactivation of ␣ENaC in the collecting duct (CD) maintain sodium and potassium balance, suggesting that the late distal convoluted tubule (DCT2) and/or the connecting tubule (CNT) participates in sodium homeostasis. To investigate the relative importance of ENaC-mediated sodium absorption in the CNT, we used Cre-lox technology to generate mice lacking ␣ENaC in the aquaporin 2-expressing CNT and CD. Western blot analysis of microdissected cortical CD (CCD) and CNT revealed absence of ␣ENaC in the CCD and weak ␣ENaC expression in the CNT. These mice exhibited a significantly higher urinary sodium excretion, a lower urine osmolality, and an increased urine volume compared with control mice. Furthermore, serum sodium was lower and potassium levels were higher in the genetically modified mice. With dietary sodium restriction, these mice experienced significant weight loss, increased urinary sodium excretion, and hyperkalemia. Plasma aldosterone levels were significantly elevated under both standard and sodium-restricted diets. In summary, ␣ENaC expression within the CNT/CD is crucial for sodium and potassium homeostasis and causes signs and symptoms of pseudohypoaldosteronism type 1 if missing.
Mutations in the WNK kinases WNK1 and WNK4 cause a rare familial form of hypertension (Gordon syndrome) by increasing expression of the thiazide-sensitive co-transporter NCCT in the kidney. Regulation of NCCT expression involves a scaffold of proteins composed of several kinases, including the third member of the WNK kinase family, WNK3. This protein, expressed in several tissues including kidney and brain, displays splice variation around exons 18 and 22. We expressed these proteins in Xenopus oocytes and found that the renal isoform of WNK3 increased but the brain isoform decreased NCCT expression and activity. Introduction of a kinase-inactivating mutation into renal WNK3 reversed its action on NCCT, and the same mutation in the brain isoforms led to loss of function. We also studied the effect of phosphorylation of a key NCCT threonine (T58) on the effects of WNK3/4 coexpression; NCCT mutants with a T58A or T58D substitution had the same surface expression as T58 but had significantly altered transporter activity; however, both isoforms of WNK3 as well as WNK4 still modulated expression of these NCCT mutants. Finally, experiments using kinase-dead STE20/SPS1-related proline/alanine-rich kinase (SPAK), a putative downstream target for WNKs, revealed that brain WNK3 acts in tandem with SPAK, whereas renal WNK3 seems to upregulate NCCT through a SPAK-independent pathway. Taken together, these results suggest that the C-terminal motifs contributed by exons 18 and 22 play an important role in the actions of WNK3 isoforms on NCCT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.