A small proportion of patients admitted with acute ischemic stroke in Cleveland received tPA; they experienced a high rate of ICH. Cleveland community experience with tPA for acute ischemic stroke may differ from that reported in clinical trials.
We consider the penalized generalized estimating equations (GEEs) for analyzing longitudinal data with high-dimensional covariates, which often arise in microarray experiments and large-scale health studies. Existing high-dimensional regression procedures often assume independent data and rely on the likelihood function. Construction of a feasible joint likelihood function for high-dimensional longitudinal data is challenging, particularly for correlated discrete outcome data. The penalized GEE procedure only requires specifying the first two marginal moments and a working correlation structure. We establish the asymptotic theory in a high-dimensional framework where the number of covariates p(n) increases as the number of clusters n increases, and p(n) can reach the same order as n. One important feature of the new procedure is that the consistency of model selection holds even if the working correlation structure is misspecified. We evaluate the performance of the proposed method using Monte Carlo simulations and demonstrate its application using a yeast cell-cycle gene expression data set.
SummaryNonparametric smoothing methods are used to model longitudinal data, but the challenge remains to incorporate correlation into nonparametric estimation procedures. In this paper, we propose an efficient estimation procedure for varying coefficient models for longitudinal data. The proposed procedure can easily take into account correlation within subjects and directly deal with both continuous and discrete response longitudinal data under the framework of generalized linear models. Unlike the generalized estimation equation approach, the newly proposed procedure is more efficient when the working correlation is misspecified. For varying-coefficient models, it is often of interest to test whether coefficient functions are time-varying or time-invariant. We propose a unified and efficient nonparametric hypothesis testing procedure, and further demonstrate that the resulting test statistics have an asymptotic chi-squared distribution. In addition, the goodness-of-fit test is applied to test whether the model assumption is satisfied. The corresponding test is also useful for choosing basis functions and the number of knots for regression spline models in conjunction with the model selection criterion. We evaluate the finite sample performance of the proposed procedures with Monte Carlo simulation studies. The proposed methodology is illustrated by an analysis of a AIDS data set.
Post-traumatic stress disorder (PTSD) is a debilitating disorder that develops in some people following trauma exposure. Trauma and PTSD have been associated with accelerated cellular aging. This study evaluated the effect of trauma and PTSD on accelerated GrimAge, an epigenetic predictor of lifespan, in traumatized civilians. This study included 218 individuals with current PTSD, 427 trauma-exposed controls without any history of PTSD and 209 subjects with lifetime PTSD history who are not categorized as current PTSD cases. The Traumatic Events Inventory (TEI) and Clinician-Administered PTSD Scale (CAPS) were used to measure lifetime trauma burden and PTSD, respectively. DNA from whole blood was interrogated using the MethylationEPIC or HumanMethylation450 BeadChips. GrimAge estimates were calculated using the methylation age calculator. Cortical thickness of 69 female subjects was assessed by using T1-weighted structural MRI images. Associations between trauma exposure, PTSD, cortical thickness, and GrimAge acceleration were tested with multiple regression models. Lifetime trauma burden (p = 0.03), current PTSD (p = 0.02) and lifetime PTSD (p = 0.005) were associated with GrimAge acceleration, indicative of a shorter predicted lifespan. The association with lifetime PTSD was replicated in an independent cohort (p = 0.04). In the MRI sub sample, GrimAge acceleration also associated with cortical atrophy in the right lateral orbitofrontal cortex (p adj = 0.03) and right posterior cingulate (p adj = 0.04), brain areas associated with emotion-regulation and threat-regulation. Our findings suggest that lifetime trauma and PTSD may contribute to a higher epigenetic-based mortality risk. We also demonstrate a relationship between cortical atrophy in PTSD-relevant brain regions and shorter predicted lifespan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.