Class II lanthipeptide synthetases (LanM enzymes) catalyze the installation of multiple thioether bridges into genetically encoded peptides to produce macrocyclic lanthipeptides, a class of biologically active natural products. Collectively, LanM enzymes install thioether rings of different sizes, topologies, and stereochemistry into a vast array of different LanA precursor peptide sequences. The factors that govern the outcome of the LanM-catalyzed reaction cascade are not fully characterized but are thought to involve both intermolecular interactions and intramolecular conformational changes in the [LanM:LanA] Michaelis complex. To test this hypothesis, we have combined AlphaFold modeling with hydrogen–deuterium exchange mass spectrometry (HDX-MS) analysis of a small collection of divergent LanM/LanA systems to investigate the similarities and differences in their conformational dynamic properties. Our data indicate that LanA precursor peptide binding triggers relatively conserved changes in the structural dynamics of the LanM dehydratase domain, supporting the existence of a similar leader peptide binding mode across the LanM family. In contrast, changes induced in the dynamics of the LanM cyclase domain were more highly variable between enzymes, perhaps reflecting different peptide–cyclase interactions and/or different modes of allosteric activation in class II lanthipeptide biosynthesis. Our analysis highlights the ability of the emerging AlphaFold platform to predict protein–peptide interactions that are supported by other lines of experimental evidence. The combination of AlphaFold modeling with HDX-MS analysis should emerge as a useful approach for investigating other conformationally dynamic enzymes involved in peptide natural product biosynthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.