Functional systems, such as feeding mechanics, often involve the evolution of several components of the musculoskeletal system that are moved in coordination to capture prey. Because these systems often involve the quick movement of several structures, some feeding systems have been hypothesized to be stereotypic. While the motor activity patterns are often stereotyped, the subsequent kinematics can be variable, many times in response to variation in prey stimulus (e.g. prey position). Patterns of feeding kinematics have been well studied among vertebrates, with less attention on invertebrate systems. The goal of this study was to examine the amount of stereotypy in the feeding strike kinematics of praying mantises. We filmed eight juvenile ghost praying mantises (Phyllocrania paradoxa) at 1000 Hz across several days within instar 7. We digitized several points that represent the movement of the coxa, trochanter-femur and tibia of the raptorial foreleg to obtain a set of kinematics including angles and angular velocities of the joint, as well as body lunge. Using the coefficient of variation, we found less stereotypy in the approach stage of the strike compared with the sweep. Using Bonferroni-corrected Pearson's correlations of kinematics with prey position, we found few traits related to prey position with the exception of some kinematics of the coxa joint and the amount of lunge used during the strike. Our results suggest that several components of the praying mantis strike are stereotypic, while others exhibit flexibility to ensure successful capture of the prey.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.