BackgroundIn mediation analysis if unmeasured confounding is present, the estimates for the direct and mediated effects may be over or under estimated. Most methods for the sensitivity analysis of unmeasured confounding in mediation have focused on the mediator-outcome relationship.ResultsThe Umediation R package enables the user to simulate unmeasured confounding of the exposure-mediator, exposure-outcome, and mediator-outcome relationships in order to see how the results of the mediation analysis would change in the presence of unmeasured confounding. We apply the Umediation package to the Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene) study to examine the role of unmeasured confounding due to population stratification on the effect of a single nucleotide polymorphism (SNP) in the CHRNA5/3/B4 locus on pulmonary function decline as mediated by cigarette smoking.ConclusionsUmediation is a flexible R package that examines the role of unmeasured confounding in mediation analysis allowing for normally distributed or Bernoulli distributed exposures, outcomes, mediators, measured confounders, and unmeasured confounders. Umediation also accommodates multiple measured confounders, multiple unmeasured confounders, and allows for a mediator-exposure interaction on the outcome. Umediation is available as an R package at https://github.com/SharonLutz/Umediation A tutorial on how to install and use the Umediation package is available in the Additional file 1.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-017-1749-y) contains supplementary material, which is available to authorized users.
Expression quantitative trait loci (eQTL) provide insight on transcription regulation and illuminate the molecular basis of phenotypic outcomes. High-throughput RNA sequencing (RNA-seq) is becoming a popular technique to measure gene expression abundance. Traditional eQTL mapping methods for microarray expression data often assume the expression data follow a normal distribution. As a result, for RNA-seq data, total read count measurements can be normalized by normal quantile transformation in order to fit the data using a linear regression. Other approaches model the total read counts using a negative binomial regression. While these methods work well for common variants (minor allele frequencies > 5% or 1%), an extension of existing methodology is needed to accommodate a collection of rare variants in RNA-seq data. Here, we examine 2 approaches that are direct applications of existing methodology and apply these approaches to RNAseq studies: 1) collapsing the rare variants in the region and using either negative binomial regression or Poisson regression and 2) using the normalized read counts with the Sequence Kernel Association Test (SKAT), the burden test for SKAT (SKAT-Burden), or an optimal combination of these two tests (SKAT-O). We evaluated these approaches via simulation studies under numerous scenarios and applied these approaches to the 1,000 Genomes Project.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.