In recent years, with a widespread of sensors embedded in all kind of mobile devices, human activity analysis is occurring more often in several domains like healthcare monitoring and fitness tracking. This trend did also enter the equestrian world because monitoring behaviours can yield important information about the health and welfare of horses. In this research, a deep learning-based approach for activity detection of equines is proposed to classify seven activities based on accelerometer data. We propose using Convolutional Neural Networks (CNN) by which features are extracted automatically by using strong computing capabilities. Furthermore, we investigate the impact of the sampling frequency, the time series length and the type of underground on which the data is gathered on the recognition accuracy and evaluate the model on three types of experimental datasets that are compiled of labelled accelerometer data gathered from six different subjects performing seven different activities. Afterwards, a horse-wise cross validation is carried out to investigate the impact of the subjects themselves on the model recognition accuracy. Finally, a slightly adjusted model is validated on different amounts of 50 Hz sensor data. A 99% accuracy can be reached for detecting seven behaviours of a seen horse when the sampling rate is 25 Hz and the time interval is 2.1 s. Four behaviours of an unseen horse can be detected with the same accuracy when the sampling rate is 69 Hz and the time interval is 2.4 s. Moreover, the accuracy of the model for the three datasets decreased on average with about 4.75% when the sampling rate was decreased from 200 Hz to 25 Hz and with 5.27% when the time interval was decreased from 3 s to 0.6 s. In addition, the classification performance of the activity "walk" was not influenced by the type of underground the horse was performing this movement on and even the model could conclude from which underground the data was gathered for three out of four undergrounds with accuracies above 93% at time intervals higher than 1.2 s. This ensures the evaluation of activity patterns in real world circumstances. The performance and ability of the model to generalise is validated on 50 Hz data from different horse types, using tenfold cross validation, reaching a mean classification accuracy of 97.84% and 96.10% when validated on a lame horse and pony, respectively. Moreover, in this work we show that using data from one sensors is at the cost of only 0.24% reduction in accuracy (99.42% vs 99.66%).
To detect behavioral anomalies (disease/injuries), 24 h monitoring of horses each day is increasingly important. To this end, recent advances in machine learning have used accelerometer data to improve the efficiency of practice sessions and for early detection of health problems. However, current devices are limited in operational lifetime due to the need to manually replace batteries. To remedy this, we investigated the possibilities to power the wireless radio with a vibrational piezoelectric energy harvester at the leg (or in the hoof) of the horse, allowing perpetual monitoring devices. This paper reports the average power that can be delivered to the node by energy harvesting for four different natural gaits of the horse: stand, walking, trot and canter, based on an existing model for a velocity-damped resonant generator (VDRG). To this end, 33 accelerometer datasets were collected over 4.5 h from six horses during different activities. Based on these measurements, a vibrational energy harvester model was calculated that can provide up to 64.04W during the energetic canter gait, taking an energy conversion rate of 60% into account. Most energy is provided during canter in the forward direction of the horse. The downwards direction is less suitable for power harvesting. Additionally, different wireless technologies are considered to realize perpetual wireless data sensing. During horse training sessions, BLE allows continues data transmissions (one packet every 0.04 s during canter), whereas IEEE 802.15.4 and UWB technologies are better suited for continuous horse monitoring during less energetic states due to their lower sleep current.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.