To improve the mechanical performance of hyaluronic acid (HA)-based hydrogels, we prepared novel hybrid hydrogels consisting of hydrophilic HA and hydrophobic poly(trimethylene carbonate) (PTMC). Both polymers were functionalized with methacrylic anhydride, yielding HAMA and PTMC-tMA. Hybrid networks with different ratios of PTMC-tMA:HAMA were prepared by photo-cross-linking, using DMSO pH 2.7 as a common solvent for both macromers. The hybrid networks had high gel contents. The hydrophilicity of the networks increased with increasing HAMA content. The networks consisted of the intended amounts of both macromers. The suture retention strength and compression modulus of the networks increased with increasing PTMC-tMA content. While the 100% HAMA network could not be sutured, the 50:50 PTMC-tMA:HAMA network had a suture retention strength of 5.3 N/mm. This is comparable to that of natural vascular tissues. Also the compression modulus (867 kPa) was significantly higher than that of the 100% HAMA network (13 kPa). Moreover, the networks were compatible with human mesenchymal stem cells. In conclusion, these resilient PTMC-tMA:HAMA networks are promising new biomaterials for tissue regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.