Domestic production of culinary herbs continues to increase in the United States. Culinary herbs are primarily propagated by seed; however, some herbs have poor germination rates and slow growth. Thus, there are advantages of propagating herbs by vegetative stem-tip cuttings as they lead to true-to-type plants and a shortened production time. Previous research of ornamental young plants and finished culinary herbs have shown a reduction in rooting time and increases in plant quality with increases in the photosynthetic daily light integral (DLI). To our knowledge, little to no research has addressed how the DLI influences culinary herb liner quality. Therefore, the objectives of this study were to quantify morphological traits of five economically important culinary herbs when grown under DLIs ranging from 2.8 to 16.4 mol·m−2·d−1. Stem-tip cuttings of Greek oregano (Origanum vulgare var. hirtum), rosemary ‘Arp’ (Rosmarinus officinalis), sage ‘Extrakta’ (Salvia officinalis), spearmint ‘Spanish’ (Mentha spicata), and thyme ‘German Winter’ (Thymus vulgaris) were excised from stock plants and rooted under no shade or aluminum shading of 36%, 56%, or 76% to create a range of DLI treatments. After 9 days (spearmint) or 16 days (all other genera) of DLI treatments, the root, shoot, and total dry mass of all culinary herb liners generally increased by 105% to 449%, 52% to 142%, and 82% to 170%, respectively, as the DLI increased from 2.8 to 16.4 mol·m−2·d−1 or genus-specific DLI optimums. Stem length of oregano, spearmint, and thyme decreased by 37%, 28%, and 27%, respectively, as the DLI increased from 2.8 to 16.4 mol·m−2·d−1. However, stem length of rosemary and sage were unaffected by the DLI. The quality index of all genera was greatest at DLIs from 10.4 to 16.4 mol·m−2·d−1. Furthermore, all culinary herbs grown under a DLI of ≤6 mol·m−2·d−1 had low root and shoot dry mass accumulation; and oregano, spearmint, and thyme were generally taller. Therefore, DLIs between 10 to 12 mol·m−2·d−1 should be maintained during culinary herb propagation, because a DLI ≥16 mol·m−2·d−1 may be deleterious and energy inefficient if supplemental lighting use is increased.