Numerous epidemiological studies have shown an inverse correlation between helminth infections and the manifestation of atopic diseases, yet the immunological mechanisms governing this phenomenon are indistinct. We therefore investigated the effects of infection with the filarial parasite Litomosoides sigmodontis on allergen-induced immune reactions and airway disease in a murine model of asthma. Infection with L. sigmodontis suppressed all aspects of the asthmatic phenotype: Ag-specific Ig production, airway reactivity to inhaled methacholine, and pulmonary eosinophilia. Similarly, Ag-specific recall proliferation and overall Th2 cytokine (IL-4, IL-5, and IL-3) production were significantly reduced after L. sigmodontis infection. Analysis of splenic mononuclear cells and mediastinal lymph nodes revealed a significant increase in the numbers of T cells with a regulatory phenotype in infected and sensitized mice compared with sensitized controls. Additionally, surface and intracellular staining for TGF-β on splenic CD4+ T cells as well as Ag-specific TGF-β secretion by splenic mononuclear cells was increased in infected and sensitized animals. Administration of Abs blocking TGF-β or depleting regulatory T cells in infected animals before allergen sensitization and challenges reversed the suppressive effect with regard to airway hyperreactivity, but did not affect airway inflammation. Despite the dissociate results of the blocking experiments, these data point toward an induction of regulatory T cells and enhanced secretion of the immunomodulatory cytokine TGF-β as one principle mechanism. In conclusion, our data support the epidemiological evidence and enhance the immunological understanding concerning the impact of helminth infections on atopic diseases thus providing new insights for the development of future studies.
Allogeneic hematopoietic stem cell transplantation represents the most effective form of immunotherapy for chemorefractory diseases. However, animal models have been missing that allow evaluation of donor-patient–specific graft-versus-leukemia effects. Thus, we sought to establish a patient-tailored humanized mouse model that would result in long-term engraftment of various lymphocytic lineages and would serve as a donor-specific surrogate. Following transfer of donor-derived peripheral blood stem cells into NOD/SCID/IL-2Rγnull (NSG) mice with supplementation of human IL-7, we could demonstrate robust engraftment and multilineage differentiation comparable to earlier studies using cord blood stem cells. Phenotypical and functional analyses of lymphoid lineages revealed that >20 wk posthematopoietic stem cell transplantation, the majority of T lymphocytes consisted of memory-type CD4+ T cells capable of inducing specific immune functions, whereas CD8+ T cells were only present in low numbers. Analysis of NSG-derived NK cells revealed the expression of constitutively activated CD56brightCD16− killer Ig-like receptornegative NK cells that exhibited functional impairments. Thus, the data presented in this study demonstrate that humanized NSG mice can be successfully used to develop a xenotransplantation model that might allow patient-tailored treatment strategies in the future, but also highlight the need to improve this model, for example, by coadministration of differentiation-promoting cytokines and induction of human MHC molecules to complement existing deficiencies in NK and CD8+ T cell development.
BackgroundPediatric patients undergoing hematopoietic stem cell transplantation (HSCT) are at high risk of acquiring fungal infections. Antifungal prophylaxis shortly after transplantation is therefore indicated, but data for pediatric patients under 12 years of age are scarce. To address this issue, we retrospectively assessed the safety, feasibility, and initial efficacy of prophylactic posaconazole in children.Methods60 consecutive pediatric patients with a median age of 6.0 years who underwent allogeneic HSCT between August 2007 and July 2010 received antifungal prophylaxis with posaconazole in the outpatient setting. 28 pediatric patients received an oral suspension at 5 mg/kg body weight b.i.d., and 32 pediatric patients received the suspension at 4 mg/kg body weight t.i.d. The observation period lasted from start of treatment with posaconazole until its termination (maximum of 200 days post-transplant).ResultsPediatric patients who received posaconazole at 4 mg/kg body weight t.i.d. had a median trough level of 383 μg/L. Patients who received posaconazole at 5 mg/kg body weight b.i.d. had a median trough level of 134 μg/L. Both regimens were well tolerated without severe side effects. In addition, no proven or probable invasive mycosis was observed.ConclusionPosaconazole was a well-tolerated, safe, and effective oral antifungal prophylaxis in pediatric patients who underwent high-dose chemotherapy and HSCT. Posaconazole at a dosage of 12 mg/kg body weight divided in three doses produced consistently higher morning trough levels than in patients who received posaconazole 5 mg/kg body weight b.i.d. Larger prospective trials are needed to obtain reliable guidelines for antifungal prophylaxis in children after HSCT.
The nucleosome is a major autoantigen in systemic lupus erythematosus (SLE); it can be detected as a circulating complex in the serum, and nucleosomes have been suggested to play a key role in disease development. In the present study, we show for the first time that physiological concentrations of purified nucleosomes trigger innate immunity. The nucleosomes are endocytosed and induce the direct activation of human neutrophils (polymorphonuclear leukocytes (PMN)) as revealed by CD11b/CD66b up-regulation, IL-8 secretion, and increased phagocytic activity. IL-8 is a neutrophil chemoattractant detected in high concentrations in the sera of patients, and IL-8 secretion might thus result in enhanced inflammation, as observed in lupus patients, via an amplification loop. Nucleosomes act as free complexes requiring no immune complex formation and independently of the presence of unmethylated CpG DNA motifs. Both normal and lupus neutrophils are sensitive to nucleosome-induced activation, and activation is not due to endotoxin or high-mobility group box 1 contamination. In mice, i.p. injection of purified nucleosomes induces neutrophil activation and recruitment in a TLR2/TLR4-independent manner. Importantly, neutrophils have been suggested to link innate and adaptive immunity. Thus, nucleosomes trigger a previously unknown pathway of innate immunity, which may partially explain why peripheral tolerance is broken in SLE patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.