In nature, abiotically formed amino acids are usually racemic. However, this is not true for the α,α-dialkyl amino acid isovaline (Iva), which has an L-enantiomeric excess in some specimens of carbonaceous meteorites. On the early Earth and Mars, such meteorites were sources of amino acids, including Iva. Therefore, a connection may exist between the possible chiral influence of non-racemic Iva and the origin of biological homochirality. On the surface of a young terrestrial planet, amino acids can be chemically altered in many ways. For example, high temperatures from geothermal heating can lead to racemization. Four billion years ago, active volcanism and volcanic islands provided suitable conditions for such reactions and perhaps even for early microbial life on Earth. In the current study, we investigated the influence of D- and L-Iva on the thermal racemization of L-alanine (L-Ala) and L-2-aminobutyric acid (L-Abu) in a simulated hot volcanic environment. The amino acids were intercalated in the clay mineral calcium montmorillonite (SAz-1). While Iva was resistant to racemization, partial racemization was observed for Ala and Abu after 8 weeks at 150°C. The experimental results – for example, accelerated racemization in the presence of Iva and different influences of the Iva enantiomers – suggest that the amino acid molecules interacted with each other, possibly in hydrogen-bonded dimers. Accelerated racemization of amino acids could have been an obstacle to the development of homochirality. Besides, it is also detrimental to the use of homochirality as a biosignature, for example, in the search for microbial life on Mars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.