Stem modularity of revision hip implant systems offers the advantage of the restoration of individual patient geometry but introduces additional interfaces, which are subjected to repetitive bending loading and have a propensity for fretting corrosion. The male stem taper is the weakest part of the modular junction due to its reduced cross section compared to the outside diameter of the stem. Taper fractures can be the consequence of overloading in combination with corrosion. The purpose of this study was to assess the influence of implant design factors, patient factors, and surgical factors on the risk of taper failure of the modular junction of revision stems. An analytical bending model was used to estimate the strength of the taper connection for pristine, fatigued and corroded conditions. Additionally, a finite element contact model of the taper connection was developed to assess the relative motion and potential for surface damage at the taper interface under physiological loading for varyied assembly and design parameters. Increasing the male taper diameter was shown to be the most effective means for increasing taper strength but would require a concurrent increase in the outer implant diameter to limit a greater risk of total surface damage for a thinner female taper wall. Increasing the assembly force decreases the total surface damage but not local magnitudes, which are probably responsible for crack initiation. It is suggested that in unfavourable loading conditions a monobloc implant system will reduce the risk of failure.
ObjectivesTaper junctions between modular hip arthroplasty femoral heads and stems fail by wear or corrosion which can be caused by relative motion at their interface. Increasing the assembly force can reduce relative motion and corrosion but may also damage surrounding tissues. The purpose of this study was to determine the effects of increasing the impaction energy and the stiffness of the impactor tool on the stability of the taper junction and on the forces transmitted through the patient’s surrounding tissues.MethodsA commercially available impaction tool was modified to assemble components in the laboratory using impactor tips with varying stiffness at different applied energy levels. Springs were mounted below the modular components to represent the patient. The pull-off force of the head from the stem was measured to assess stability, and the displacement of the springs was measured to assess the force transmitted to the patient’s tissues.ResultsThe pull-off force of the head increased as the stiffness of the impactor tip increased but without increasing the force transmitted through the springs (patient). Increasing the impaction energy increased the pull-off force but also increased the force transmitted through the springs.ConclusionsTo limit wear and corrosion, manufacturers should maximize the stiffness of the impactor tool but without damaging the surface of the head. This strategy will maximize the stability of the head on the stem for a given applied energy, without influencing the force transmitted through the patient’s tissues. Current impactor designs already appear to approach this limit. Increasing the applied energy (which is dependent on the mass of the hammer and square of the contact speed) increases the stability of the modular connection but proportionally increases the force transmitted through the patient’s tissues, as well as to the surface of the head, and should be restricted to safe levels.Cite this article: A. Krull, M. M. Morlock, N. E. Bishop. Maximizing the fixation strength of modular components by impaction without tissue damage. Bone Joint Res 2018;7:196–204. DOI: 10.1302/2046-3758.72.BJR-2017-0078.R2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.