Herein we report the mechanochemical Friedel‐Crafts alkylation of 1,3,5‐triphenylbenzene (TPB) with two organochloride cross‐linking agents, dichloromethane (DCM) and chloroform (CHCl3), respectively. During a thorough milling parameter evaluation, the DCM‐linked polymers were found to be flexible and extremely sensitive toward parameter changes, which even enables the synthesis of a polymer with a SSABET of 1670 m2/g, on par with the solution‐based reference. Contrary, CHCl3‐linked polymers are exhibiting a rigid structure, with a high porosity that is widely unaffected by parameter changes. As a result, a polymer with a SSABET of 1280 m2/g could be generated in as little as 30 minutes, outperforming the reported literature analogue in terms of synthesis time and SSABET. To underline the environmental benefits of our fast and solvent‐free synthesis approach, the green metrics are discussed, revealing an enhancement of the mass intensity, mass productivity and the E‐factor, as well as of synthesis time and the work‐up in comparison to the classical synthesis. Therefore, the mechanochemical polymerization is presented as a versatile tool, enabling the generation of highly porous polymers within short reaction times, with a minimal use of chlorinated cross‐linker and with the possibility of a post polymerization modification.
Yttrium oxide (Y2O3) thin films are implemented as a functional component in a broad field of applications such as optics, electronics or thermal barrier coatings. Atomic layer deposition (ALD) is a promising technique to fabricate high‐quality thin films with atomic level precision in which the precursor choice plays a crucial role in process development. The limited number of suitable yttrium precursors available for ALD of Y2O3 has triggered increasing research activity seeking new or modified precursors. In this study, heteroleptic compounds of yttrium bearing the cyclopentadienyl (Cp) ligand in combination with the chelating amidinate or guanidinate ligands were targeted as potential precursors for ALD. In this context, a systematic and comparative study of the structure and thermal characteristics of (bis‐cyclopentadienyl‐(N,N'‐diisopropyl‐2‐methyl‐amidinato)yttrium) [YCp2(dpamd)] 1 and (bis‐cyclopentadienyl‐(N,N'‐diisopropyl‐2‐dimethylamido‐guanidinato)yttrium) [YCp2(dpdmg)] 2 was performed. Complementary characterization tools such as 1H‐NMR, elemental analysis, electron‐impact mass spectrometry (EI‐MS) and single‐crystal X‐ray diffraction (XRD) confirmed the spectroscopic purity and the monomeric nature of the metalorganic compounds. Hirshfeld surface analysis revealed influence of the ligand choice on the intermolecular interactions of the compounds. The important figures of merit for a precursor, namely the thermal properties were investigated via thermogravimetric analysis. Thus, the volatility, transport behavior and thermal stability were examined and compared to their homoleptic counterparts [YCp3], [Y(dpamd)3] or [Y(dpdmg)3].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.