Probabilistic service life analyses for assessing the risk of chloride-induced corrosion in uncracked concrete are often realized using the well-known chloride ingress model of the fib Model Code for Service Life Design. In practice, however, concrete includes cracks, which alter the resistance of the concrete against the chloride ingress. In the past, different approaches to account for preexisting cracks, were developed. In this study, these modeling approaches are summarized and compared in context of the probabilistic service life prognosis. Furthermore, a new approach to account for cracks by theoretically adapting the convection zone is presented. This study demonstrates that the choice of model extension to account for cracks vastly influences the prediction results and shows the limits of application of the current extensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.