SummaryThe lbpA gene of Neisseria meningitidis encodes an outer membrane lactoferrin-binding protein and shows homology to the transferrin-binding protein, TbpA. Previously, we have detected part of an open reading frame upstream of lbpA. The putative product of this open reading frame, tentatively designated lbpB, showed homology to the transferrin-binding protein TbpB, suggesting that the lactoferrrin receptor, like the transferrin receptor, consists of two proteins. The complete nucleotide sequence of lbpB was determined. The gene encodes a 77.5 kDa protein, probably a lipoprotein, with homology, 33% identity to the TbpB of N. meningitidis. A unique feature of LbpB is the presence of two stretches of negatively charged residues, which might be involved in lactoferrin binding. Antisera were raised against synthetic peptides corresponding to the C-terminal part of the putative protein and used to demonstrate that the gene is indeed expressed. Consistent with the presence of a putative Fur binding site upstream of the lbpB gene, expression of both LbpA and LbpB was proved to be iron regulated in Western blot experiments. The LbpB protein appeared to be less stable than TbpB in SDScontaining sample buffer. Isogenic mutants lacking either LbpA or LbpB exhibited a reduced ability to bind lactoferrin. In contrast to the lbpB mutant, the lbpA mutant was completely unable to use lactoferrin as a sole source of iron.
The study was undertaken as a proof of principle with the aim to demonstrate (i) the quality, stability and suitability of the bacterial strains for low-titre spiking of blood components, (ii) the property of donor-independent proliferation in PCs, and (iii) their suitability for worldwide shipping of deep frozen, blinded pathogenic bacteria. These aims were successfully fulfilled. The WHO Expert Committee Biological Standardisation has approved the adoption of these four bacteria strains as the first Repository for Transfusion-Relevant Bacteria Reference Strains and, additionally, endorsed as a project the addition of six further bacteria strain preparations suitable for control of platelet contamination as the next step of enlargement of the repository.
When grown under iron limitation, Neisseria meningitidis expresses several additional outer membrane proteins (OMPs), which were studied to assess their vaccine potential. Two monoclonal antibodies were obtained against a 98-kDa OMP of strain 2996 (B:2b:Pl.2). Cross-reactivity studies revealed that the two antibodies reacted with 44 and 42 of 74 meningococcal strains, respectively. The antibodies did not block the binding of transferrin or lactoferrin to intact cells. The structural gene for the protein, tentatively designated iroA, was isolated and sequenced. Computer analysis revealed homology to the ferric siderophore receptors in the outer membrane of Escherichia coli and to gonococcal transferrin-binding protein 1 (ThpA). The high degree of cross-reactivity and the results of Southern blot analyses, which showed that the iroA gene is also present in strains that did not react with the monoclonal antibodies, suggest that the 98-kDa OMP is well conserved among meningococci and that it is a suitable vaccine candidate. However, the antibodies were not bactericidal in an in vitro assay with human complement.
The iroA gene product is an iron limitation-inducible outer membrane protein of Neisseria meningitidis. A spontaneous mutant lacking the gene was unable to bind lactoferrin. Furthermore, Escherichia coli strains expressing the IroA protein were capable of binding lactoferrin. Apparently, the IroA protein functions as a lactoferrin receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.