Recently, 1,2-dehydropyrrolizidine alkaloid (PA) ester alkaloids, found predominantly as their N-oxides (PANOs, pyrrolizidine N-oxides), have been reported in both honey and in pollen obtained directly from PA plants and pollen loads collected by bees, raising the possibility of health risks for consumers of these products. We confirm these findings in regard to floral pollen, using pollen collected directly from flowers of the known PA plants Senecio jacobaea, S. vernalis, Echium vulgare and pollinia of Phalaenopsis hybrids, and we extend analyses of 1,2-unsaturated PAs and 1,2-unsaturated PANOs to include bee-pollen products currently being sold in supermarkets and on the Internet as food supplements. PA content of floral pollen ranged from 0.5 to 5 mg/g. The highest values were observed in pollen obtained from Senecio species. Up to 95% of the PAs are found as PANOs. Detailed studies with S. vernalis revealed unique PA patterns in pollen and flowers. While seneciphylline was the most prominent PA in S. vernalis pollen, the flowers were dominated by senecionine. To analyze trace amounts of 1,2-unsaturated PAs in pollen products, our previously elaborated method consisting of strong cation exchange-SPE, two reduction steps followed by silylation and subsequent capillary high-resolution GC-MS using SIM mode was applied. In total, 55 commercially available pollen products were analyzed. Seventeen (31%) samples contained 1,2-unsaturated PAs in the range from 1.08 to 16.35 microg/g, calculated as retronecine equivalents. The 1,2-unsaturated PA content of pollen products is expressed in terms of a single sum parameter and no background information such as foraged plants, pollen analysis, etc. was needed to analyze the samples. The detection limit of overall procedure and the reliable quantitation limit were 0.003 and 0.01 microg/g, respectively.
Pyrrolizidine alkaloids (PAs) are secondary plant constituents that comprise about 400 different structures and occur in two major forms, a tertiary form and the corresponding N-oxide. PAs containing a 1,2-double bond are pre-toxins and metabolically activated by the action of hepatic P-450 enzymes to toxic pyrroles. Besides the acute toxic effects, the genotoxic and tumorigenicity potential of PAs was demonstrated in some eukaryotic model systems. Recently, the potential PA contamination of food and feeding stuff attracted recurrent great deals of attention. Humans are exposed to these toxins by consumption of herbal medicine, herbal teas, dietary supplements or food containing PA plant material. In numerous studies the potential threat to human health by PAs is stated. In pharmaceuticals, the use of these plants is regulated. Considering the PA concentrations observed especially in authentic honey from PA producing plants and pollen products, the results provoke an international regulation of PAs in food.
Recent studies have shown the occurrence of plant derived pyrrolizidine alkaloids (PAs) in retail honeys and pollen loads, but little is known about how these compounds influence the fitness of foraging honey bees. In feeding experiments, we tested a mix of tertiary PAs and the corresponding N-oxides from Senecio vernalis, pure monocrotaline, and 1,2-dihydromonocrotaline in 50% (w/w) sucrose solutions. The bees were analyzed chemically to correlate the observed effects to the ingested amount of PAs. PA-N-oxides were deterrent at concentrations >0.2%. 1,2-Unsaturated tertiary PAs were toxic at high concentrations. The observed PAs mortality could be linked directly to the presence of the 1,2-double bond, a well established essential feature of PA cytotoxicity. In contrast, feeding experiments with 1,2-dihydromonocrotaline revealed no toxic effects. Levels of less than 50 microg 1,2-unsaturated tertiary PAs per individual adult bee were tolerated without negative effects. PA-N-oxides fed to bees were reduced partially to the corresponding tertiary PAs. Unlike some specialized insects, bees are not able to actively detoxify PAs through N-oxidation. To gain insight into how PAs are transmitted among bees, we tested for horizontal PA transfer (trophallaxis). Under laboratory conditions, up to 15% of an ingested PA diet was exchanged from bee to bee, disclosing a possible route for incorporation into the honey comb. In the absence of alternative nectar and pollen sources, PA-containing plants might exhibit a threat to vulnerable bee larvae, and this might affect the overall colony fitness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.