Resistance arises quickly during chemotherapeutic selection and is particularly problematic during long-term treatment regimens such as those for tuberculosis, HIV infections, or cancer. Although drug combination therapy reduces the evolution of drug resistance, drug pairs vary in their ability to do so. Thus, predictive models are needed to rationally design resistance-limiting therapeutic regimens. Using adaptive evolution, we studied the resistance response of the common pathogen Escherichia coli to 5 different single antibiotics and all 10 different antibiotic drug pairs. By analyzing the genomes of all evolved E. coli lineages, we identified the mutational events that drive the differences in drug resistance levels and found that the degree of resistance development against drug combinations can be understood in terms of collateral sensitivity and resistance that occurred during adaptation to the component drugs. Then, using engineered E. coli strains, we confirmed that drug resistance mutations that imposed collateral sensitivity were suppressed in a drug pair growth environment. These results provide a framework for rationally selecting drug combinations that limit resistance evolution.
OBJECTIVEThe evidence on the association between fish consumption, dietary long-chain n-3 fatty acids, and risk of type 2 diabetes is inconsistent. We therefore performed a systematic review and meta-analysis of the available prospective evidence.RESEARCH DESIGN AND METHODSStudies were identified by searching the PubMed and EMBASE databases through 15 December 2011 and by reviewing the reference lists of retrieved articles. Prospective studies were included if they reported relative risk (RR) estimates with 95% CIs for the association between fish consumption and/or dietary long-chain n-3 fatty acids and incidence of type 2 diabetes. A dose-response random-effects model was used to combine study-specific RRs. Potential sources of heterogeneity were explored by prespecified stratifications.RESULTSSixteen studies involving 527,441 participants and 24,082 diabetes cases were included. Considerable statistical heterogeneity in the overall summary estimates was partly explained by geographical differences. For each serving per week increment in fish consumption, the RRs (95% CIs) of type 2 diabetes were 1.05 (1.02–1.09), 1.03 (0.96–1.11), and 0.98 (0.97–1.00) combining U.S., European, and Asian/Australian studies, respectively. For each 0.30 g per day increment in long-chain n-3 fatty acids, the corresponding summary estimates were 1.17 (1.09–1.26), 0.98 (0.70–1.37), and 0.90 (0.82–0.98).CONCLUSIONSResults from this meta-analysis indicate differences between geographical regions in observed associations of fish consumption and dietary intake of long-chain n-3 fatty acids with risk of type 2 diabetes. In consideration of the heterogeneous results, the relationship warrants further investigation. Meanwhile, current public health recommendations on fish consumption should be upheld unchanged.
BackgroundWhether light-to-moderate alcohol consumption is protective against stroke, and whether any association differs by stroke type, is controversial. We conducted a meta-analysis to summarize the evidence from prospective studies on alcohol drinking and stroke types.MethodsStudies were identified by searching PubMed to September 1, 2016, and reference lists of retrieved articles. Additional data from 73,587 Swedish adults in two prospective studies were included. Study-specific results were combined in a random-effects model.ResultsThe meta-analysis included 27 prospective studies with data on ischemic stroke (25 studies), intracerebral hemorrhage (11 studies), and/or subarachnoid hemorrhage (11 studies). Light and moderate alcohol consumption was associated with a lower risk of ischemic stroke, whereas high and heavy drinking was associated with an increased risk; the overall RRs were 0.90 (95 % CI, 0.85–0.95) for less than 1 drink/day, 0.92 (95 % CI, 0.87–0.97) for 1–2 drinks/day, 1.08 (95 % CI, 1.01–1.15) for more than 2–4 drinks/day, and 1.14 (95 % CI, 1.02–1.28) for more than 4 drinks/day. Light and moderate alcohol drinking was not associated with any hemorrhagic stroke subtype. High alcohol consumption (>2–4 drinks/day) was associated with a non-significant increased risk of both hemorrhagic stroke subtypes, and the relative risk for heavy drinking (>4 drinks/day) were 1.67 (95 % CI, 1.25–2.23) for intracerebral hemorrhage and 1.82 (95 % CI, 1.18–2.82) for subarachnoid hemorrhage.ConclusionLight and moderate alcohol consumption was inversely associated only with ischemic stroke, whereas heavy drinking was associated with increased risk of all stroke types with a stronger association for hemorrhagic strokes.Electronic supplementary materialThe online version of this article (doi:10.1186/s12916-016-0721-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.