Mast cells (MCs) are powerful immune cells that mature in the peripheral tissues from bone marrow (BM)-derived mast cell progenitors (MCp). Accumulation of MCs in lung compartments where they are normally absent is thought to enhance symptoms in asthma. The enrichment of lung MCs is also observed in mice subjected to models of allergic airway inflammation. However, whether other types of lung inflammation trigger increased number of MCp, which give rise to MCs, is unknown. Here, mouse-adapted H1N1 influenza A was used as a model of respiratory virus infection. Intranasal administration of the virus induced expression of VCAM-1 on the lung vascular endothelium and an extensive increase in integrin β7hi lung MCp. Experiments were performed to distinguish whether the influenza-induced increase in the number of lung MCp was triggered mainly by recruitment or in situ cell proliferation. A similar proportion of lung MCp from influenza-infected and PBS control mice were found to be in a proliferative state. Furthermore, BM chimeric mice were used in which the possibility of influenza-induced in situ cell proliferation of host MCp was prevented. Influenza infection in the chimeric mice induced a similar number of lung MCp as in normal mice. These experiments demonstrated that recruitment of MCp to the lung is the major mechanism behind the influenza-induced increase in lung MCp. Fifteen days post-infection, the influenza infection had elicited an immature MC population expressing intermediate levels of integrin β7, which was absent in controls. At the same time point, an increased number of toluidine blue+ MCs was detected in the upper central airways. When the inflammation was resolved, the MCs that accumulated in the lung upon influenza infection were gradually lost. In summary, our study reveals that influenza infection induces a transient accumulation of lung MCs through the recruitment and maturation of MCp. We speculate that temporary augmented numbers of lung MCs are a cause behind virus-induced exacerbations of MC-related lung diseases such as asthma.
Objective-We investigated the potential role of ADAMTS-1 (a disintegrin and metalloprotease with thrombospondin motif type I) in atherogenesis. Methods and Results-ADAMTS-1 is expressed at the highest levels in the aorta when compared with other human tissues examined. Immunolocalization studies in human aorta and coronary artery indicate that ADAMTS-1 expression is mainly seen at low levels in the medial layer, but upregulated in the intima when plaque is present. We found that ADAMTS-1 mRNA levels are significantly higher in proliferating/migrating cultured primary aortic vascular smooth muscle cells (VSMCs) compared with resting/confluent cells. Using the mouse carotid artery flow cessation model, we show that there are differences in vessel remodeling in ADAMTS-1 transgenic/apoE-deficient mice compared with apoE deficiency alone, particularly a significant increase in intimal hyperplasia. We show that ADAMTS-1 can cleave the large versican containing proteoglycan population purified from cultured human aortic VSMCs. Finally, using versican peptide substrates, we show data suggesting that ADAMTS-1 cleaves versican at multiple sites. Conclusion-We See page 12Early in atherogenesis, VSMCs from the media are thought to migrate into the intima and contribute to the development of atherosclerotic lesions. Although what initially triggers these events is not known, it is thought that proteases released by VSMCs degrade the matrix proteins in the intima, particularly the main proteoglycan of the arterial intima versican, making the intima more permissive for invasion by VSMCs. One recently discovered family of metalloproteases, the ADAMTS family, might play a key role in atherogenesis by modulating the degradation of versican and possibly other proteoglycans.The first member of this family to be identified is ADAMTS-1. 3,4 It has been observed that ADAMTS-1 mRNA is upregulated substantially in human umbilical vein endothelial cells and cardiac microvascular endothelial cells under shear stress, suggesting regulation during flow-dependent vascular remodeling. 5 ADAMTS-1 has been shown to cleave the proteoglycan versican, which is expressed by VSMCs. 6 -8 Versican can exist in 4 isoforms (V0, V1, V2, and V3), depending on alternative splicing of the chondroitin sulfate containing glycosaminoglycan domains. V0 versican contains all possible domains, whereas the glycosaminoglycan-alpha and glycosaminoglycan-beta domains are spliced out in the V1 and V2 versican isoforms, respectively. 7 ADAMTS-1 and ADAMTS-4 have been shown to cleave V1/V0 versican at the Glu 441 -Ala 442 /Glu 1428 -Ala 1429 bond and the product of this cleavage was shown to be present in human atherosclerotic plaques by immunohistochemistry using neoepitope antibodies. 8 ADAMTS-1 has also been shown to have a role in matrix remodeling during ovulation in mice, which involves dissolution of connective matrix and cellular layers. A. ADAMTS-1-deficient mice displayed impaired ovulation, and the authors proposed that this was at least partially caused by...
Follicular dendritic cells (FDCs) are rare and enigmatic cells that mainly reside in germinal centers (GCs). They are capable of capturing immune complexes, via their Fc (FcRs) and complement receptors (CRs) and storing them for long periods in non-degradative vesicles. Presentation of ICs on FDCs to B cells is believed to drive affinity maturation. CR1 and CR2 are expressed on B cells and FDCs. Cr2 knock out (KO) mice, lacking both receptors, have impaired antibody and GC responses. Utilizing a novel ImageJ macro to analyze confocal fluorescence microscopy images of spleen sections, we here investigate how FDCs in wild type (WT) and Cr2 KO mice behave during the first two weeks after immunization with sheep red blood cells (SRBC). Mice were immunized with SRBC i.v. and spleen and serum samples harvested at various time points. As expected, antibody and GC responses in Cr2 KO mice were impaired in comparison to WT mice. Fewer FDCs were identified in Cr2 KO mice, and these exhibited differential localization and organization in comparison to WT mice. WT FDCs were primarily located within GCs at the light zone/dark zone border. FDCs from WT but not Cr2 KO mice were actively dispersed in GCs, i.e. tended to move away from each other, presumably to increase their surface area for B cell interaction. FDCs from Cr2 KO mice were more often found on follicles outside of the GCs and those within the GCs were closer to the periphery in comparison to WT FDCs. Expression of CR1 and CR2, FcγRIIB, and FcµR increased in FDCs from WT mice during the course of immunization. The results suggest that decreased ability to capture ICs by FDCs lacking CR1 and CR2 may not be the only explanation for the impaired GC and antibody responses in Cr2 KO mice. Poor FDC organization in GCs and failure to increase receptor expression after immunization may further contribute to the inefficient immune responses observed.
Mast cells release disease-causing mediators and accumulate in the lung of asthmatics. The most common cause of exacerbations of asthma is respiratory virus infections such as influenza. Recently, we demonstrated that influenza infection in mice triggers the recruitment of mast cell progenitors to the lung. This process starts early after infection and leads to the accumulation of mast cells. Previous studies showed that an adaptive immune response was required to trigger the recruitment of mast cell progenitors to the lung in a mouse model of allergic lung inflammation. Therefore, we set out to determine whether an adaptive immune response against the virus is needed to cause the influenza-induced recruitment of mast cell progenitors to the lung. We found that influenza-induced recruitment of mast cell progenitors to the lung was intact in Rag2−/− mice and mice depleted of CD4+ cells, implicating the involvement of innate immune signals in this process. Seven weeks after the primary infection, the influenza-exposed mice harbored more lung mast cells than unexposed mice. As innate immunity was implicated in stimulating the recruitment process, several compounds known to trigger innate immune responses were administrated intranasally to test their ability to cause an increase in lung mast cell progenitors. Poly I:C, a synthetic analog of viral dsRNA, induced a TLR3-dependent increase in lung mast cell progenitors. In addition, IL-33 induced an ST2-dependent increase in lung mast cell progenitors. In contrast, the influenza-induced recruitment of mast cell progenitors to the lung occurred independently of either TLR3 or ST2, as demonstrated using Tlr3−/− or Il1rl1−/− mice. Furthermore, neutralization of IL-33 in Tlr3−/− mice could not abrogate the influenza-induced influx of mast cell progenitors to the lung. These results suggest that other innate receptor(s) contribute to mount the influx of mast cell progenitors to the lung upon influenza infection. Our study establishes that mast cell progenitors can be rapidly recruited to the lung by innate immune signals. This indicates that during life various innate stimuli of the respiratory tract trigger increases in the mast cell population within the lung. The expanded mast cell population may contribute to the exacerbations of symptoms which occurs when asthmatics are exposed to respiratory infections.
Antigen-specific IgG antibodies, passively administered together with erythrocytes, prevent antibody responses against the erythrocytes. The mechanism behind the suppressive ability of IgG has been the subject of intensive studies, yet there is no consensus as to how it works. An important question is whether the Fc-region of IgG is required. Several laboratories have shown that IgG suppresses equally well in wildtype mice and mice lacking the inhibitory FcγIIB, activating FcγRs (FcγRI, III, and IV), or complement factor C3. These observations consistently suggest that IgG-mediated suppression does not rely on Fc-mediated antibody functions. However, it was recently shown that anti-KEL sera failed to suppress antibody responses to KEL-expressing transgenic mouse erythrocytes in double knock-out mice lacking both activating FcγRs and C3. Yet, in the same study, antibody-mediated suppression worked well in each single knock-out strain. This unexpected observation suggested Fc-dependence of IgG-mediated suppression and prompted us to investigate the issue in the classical experimental model using sheep red blood cells (SRBC) as antigen. SRBC alone or IgG anti-SRBC together with SRBC was administered to wildtype and double knock-out mice lacking C3 and activating FcγRs. IgG efficiently suppressed the IgM and IgG anti-SRBC responses in both mouse strains, thus supporting previous observations that suppression in this model is Fc-independent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.