A series of six new 2,2'-bithiophene-functionalized diketopyrrolopyrrole (DPP) dyes 7a-f bearing different electron-donating and electron-withdrawing substituents at the terminal thiophene units was synthesized by palladium-catalyzed cross-coupling reactions. The to date unknown diiodinated DPP 2 and the corresponding boronic ester derivative 3 could be prepared in high yields, and these are shown to be versatile building blocks for the synthesis of DPP-based molecular materials by Negishi, Stille, and Suzuki coupling. The influence of the peripheral substituents on the optical and electrochemical properties of the present series of DPP dyes 7a-f were investigated by UV/vis and steady-state fluorescence spectroscopy and cyclic voltammetry, revealing an appreciable effect on the electronic nature of these dyes. The diamino-substituted DPP derivative 7e exhibits a strong absorption band reaching in the near-infrared (NIR) region, which is a highly desirable feature for application in organic photovoltaics.
Two new perylene bisimide (PBI) derivatives possessing crown ether receptors at the 1,7 bay-positions and solubilizing ionic imide substituents were synthesized and their self-assembly properties in the presence of different metal ions were studied, revealing highly selective barium ion templated self-assembly of 15-crown-5 functionalized PBI into H-type dimer aggregates.
The host-guest binding properties of a fluorescent perylene bisimide (PBI) receptor equipped with crown ether were studied in detail with a series of aromatic amino acids and dipeptides by UV/Vis, fluorescence and NMR spectroscopy. Fluorescence titration experiments showed that electron-rich aromatic amino acids and dipeptides strongly quench the fluorescence of the electron-poor PBI host molecule. Benesi-Hildebrand plots of fluorescence titration data confirmed the formation of host-guest complexes with 1:2 stoichiometry. Binding constants determined by global analysis of UV/Vis and fluorescence titration experiments revealed values between 10 m and 10 m in acetonitrile/methanol (9:1) at 23 °C. These data showed that amino acid l-Trp having an indole group and dipeptides containing this amino acid bind to the PBI receptor more strongly than other amino acids and dipeptides investigated here. For dipeptides containing l-Trp or l-Tyr, the binding strength is dependent on the distance between the ammonium group and the aromatic unit of the amino acids and dipeptides leading to a strong sensitivity for Ala-Trp dipeptide. 1D and 2D NMR experiments also corroborated 1:2 host-guest complexation and indicated formation of two diastereomeric species of host-guest complexes. The studies have shown that a properly functionalized PBI fluorophore functions as a molecular probe for the optical sensing of aromatic amino acids and dipeptides.
Biocompatible water-soluble naphthalene diimides (NDIs) were synthesized and a core-dichlorinated NDI was shown to detect primary amines and biogenic diamines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.