The island of Lombok in Indonesia is located between the Indo-Australian and Eurasian subduction trenches and the Flores back-arc thrust, making it vulnerable to earthquakes. On 29 July 2018, a significant earthquake Mw 6.4 shook this region and was followed by series of major earthquakes (Mw>5.8) on 5, 9, and 19 August, which led to severe damage in the northern Lombok area. In this study, we attempt to reveal the possible cause of the sequences of the 2018 Lombok earthquakes based on aftershock monitoring data. Twenty stations were deployed to record earthquake waveform data from 4 August to 9 September 2018. In total, 3259 events were identified using 28,728 P- and 20,713 S-wave arrival times during the monitoring. The aftershock hypocenters were determined using a nonlinear approach and relocated using double-difference method. The moment magnitude (Mw) of each event was determined by fitting the displacement spectrum amplitude using a Brune-type model. The magnitudes of the aftershocks range from Mw 1.7 to 6.7. The seismicity pattern reveals three clusters located in the Flores oceanic crust, which fit well with the occurrences of the four events with Mw>6. We interpret these events as the main rupture area of the 2018 Lombok earthquake sequence. Furthermore, an aseismic zone in the vicinity of Rinjani extending toward the northwestern part of Lombok was observed. We propose that the crust in this area has elevated temperatures and is highly fractured thus inhibiting the generation of large earthquakes. The aseismic nature is therefore an artifact of the detection threshold of our network (Mw 4.6).
Summary We develop and present a three-dimensional (3D) seismic velocity model of the source region of the 2018 Lombok, Indonesia earthquakes by employing local earthquake tomography. The data consist of 28,728 P- and 20,713 S-wave arrival times from 3,259 events which were recorded by 20 local seismic stations. The results show that most of the significant earthquakes occur to the edge of high-velocity regions. We interpret these to represent coherent blocks of the Flores Oceanic Crust underthrusting Lombok. At depths shallower than the nucleation area of the largest earthquake, many triggered aftershocks are located within a low-velocity, high-Vp/Vs region which is probably a highly fractured fault zone with a large amount of fluid. This fault zone is parallel to the dip of the Flores Back Arc Thrust and probably ruptured during this earthquake sequence. A prominent low-velocity, high-Vp/Vs region is co-located with the northwest and southern flank of the Rinjani volcanic complex. This large aseismic region is probably related to a wide area of the crust containing fluids due to ongoing magma intrusion beneath the volcano. To the east of Rinjani Volcano a cooled intrusive complex was imaged. It is characterized by high-velocity and low-Vp/Vs, supported by the presence of a high Bouguer anomaly. We confirm the existence of the Sumbawa Strait Strike-Slip Fault and find it is characterized by an elongated low-velocity, high-Vp/Vs zone.
Local earthquake data was used to determine a three-dimensional (3D) seismic attenuation structure around the aftershock source region of the 2018 Lombok earthquake in Indonesia. The aftershocks were recorded by 13 seismic stations from August 4 to September 9, 2018. The selected data consist of 6,281 P-wave t∗ values from 914 events, which had good t∗ quality in at least four stations. Our results show that the two aftershock clusters northwest and northeast of Lombok Island have different attenuation characteristics. A low P-wave quality factor (low-Qp), low P-wave velocity (Vp), and high ratio of P-wave velocity and S-wave velocity (Vp/Vs), which coincide with a shallower earthquake (<20 km) northwest of Lombok Island, might be associated with a brittle area of basal and imbricated faults influenced by high fluid content. At the same time, the high-Qp, low Vp, and low Vp/Vs, which coincide with a deeper earthquake (>20 km) northeast of Lombok Island, might be associated with an area that lacks fluid content. The difference in fluid content between the northwest and northeast regions might be the cause of the early generation of aftershocks in the northwest area. The significant earthquake that happened on August 5, 2018, took place in a region with moderate Qp, close to the contrast of high and low-Qp and high Vp, which suggests that the earthquake started in a strong material before triggering the shallower aftershocks occurring in an area affected by fluid content. We also identified an old intrusive body on the northeast flank of the Rinjani volcano, which was characterized by a high-Qp, high-velocity, and a high Bouguer anomaly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.