Oxygenated blood from the heart is directed into the systemic circulation through the aortic arch arteries (AAAs). The AAAs arise by remodeling of three symmetrical pairs of pharyngeal arch arteries (PAAs), which connect the heart with the paired dorsal aortae at mid-gestation. Aberrant PAA formation results in defects frequently observed in patients with lethal congenital heart disease. How the PAAs form in mammals is not understood. The work presented in this manuscript shows that the second heart field (SHF) is the major source of progenitors giving rise to the endothelium of the pharyngeal arches 3 – 6, while the endothelium in the pharyngeal arches 1 and 2 is derived from a different source. During the formation of the PAAs 3 – 6, endothelial progenitors in the SHF extend cellular processes toward the pharyngeal endoderm, migrate from the SHF and assemble into a uniform vascular plexus. This plexus then undergoes remodeling, whereby plexus endothelial cells coalesce into a large PAA in each pharyngeal arch. Taken together, our studies establish a platform for investigating cellular and molecular mechanisms regulating PAA formation and alteration that lead to disease.
Objective-To assess contributing factors to increased obesity risk, by comparing children with autism spectrum disorder (ASD), developmental delays/disorders, and general population controls in weight status, and to examine associations between weight status and presence of co-occurring medical, behavioral, developmental, or psychiatric conditions across groups and ASD severity among children with ASD. Study design-The Study to Explore Early Development is a multisite cross-sectional study of children, 2-5 years of age, classified as children with ASD (n = 668), children with developmental delays/disorders (n = 914), or general population controls (n = 884). Using an observational cohort design, we compared the 3 groups. Children's heights and weights were measured during a The authors declare no conflicts of interest.
Rationale: Defects in the morphogenesis of the 4th pharyngeal arch arteries (PAAs) give rise to lethal birth defects. Understanding genes and mechanisms regulating PAA formation will provide important insights into the etiology and treatments for congenital heart disease. Objective: Cell-ECM interactions play essential roles in the morphogenesis of PAAs and their derivatives, the aortic arch artery (AAA) and its major branches; however, their specific functions are not well-understood. Previously, we demonstrated that integrin α5β1 and fibronectin (Fn1) expressed in the Isl1 lineages regulate PAA formation. The objective of the current studies was to investigate cellular mechanisms by which integrin α5β1 and Fn1 regulate AAA morphogenesis. Methods and Results: Using temporal lineage tracing, whole-mount confocal imaging, and quantitative analysis of the second heart field (SHF) and endothelial cell (EC) dynamics, we show that the majority of PAA EC progenitors arise by E7.5 in the SHF and contribute to pharyngeal arch endothelium between E7.5 and E9.5. Consequently, SHF-derived ECs in the pharyngeal arches form a uniform plexus of small blood vessels, which remodels into the PAAs by 35 somites. The remodeling of the vascular plexus is orchestrated by signals dependent on the pharyngeal ECM microenvironment, extrinsic to the endothelium. Conditional ablation of integrin α5β1 or Fn1 in the Isl1 lineages showed that signaling by the ECM regulates AAA morphogenesis at multiple steps: 1) accumulation of SHF-derived ECs in the pharyngeal arches, 2) remodeling of the uniform EC plexus in the 4th arches into the PAAs; and 3) differentiation of neural crest-derived cells adjacent to the PAA endothelium into vascular smooth muscle cells. Conclusions: PAA formation is a multi-step process entailing dynamic contribution of SHF-derived ECs to pharyngeal arches, the remodeling of endothelial plexus into the PAAs, and the remodeling of the PAAs into the AAA and its major branches. Cell-ECM interactions regulated by integrin α5β1 and Fn1 play essential roles at each of these developmental stages.
We analyzed CBCL/1½−5 Pervasive Developmental Problems (DSM-PDP) scores in 3-to 5-yearolds from the Study to Explore Early Development (SEED), a multi-site case control study, with the objective to discriminate children with ASD (N = 656) from children with Developmental Delay (DD) (N = 646), children with Developmental Delay (DD) plus ASD features (DD-AF) (N = 284), and population controls (POP) (N = 827). ASD diagnosis was confirmed with the ADOS and ADI-R. With a cut-point of T ≥ 65, sensitivity was 80% for ASD, with specificity varying across groups: POP (0.93), DD-noAF (0.85), and DD-AF (0.50). One-way ANOVA yielded a large group effect (η 2 = 0.50). Our results support the CBCL/1½−5's as a time-efficient ASD screener for identifying preschoolers needing further evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.