Most intelligent transportation systems use a combination of radar sensors and cameras for robust vehicle perception. The calibration of these heterogeneous sensor types in an automatic fashion during system operation is challenging due to differing physical measurement principles and the high sparsity of traffic radars. We propose -to the best of our knowledge -the first data-driven method for automatic rotational radar-camera calibration without dedicated calibration targets. Our approach is based on a coarse and a fine convolutional neural network. We employ a boosting-inspired training algorithm, where we train the fine network on the residual error of the coarse network. Due to the unavailability of public datasets combining radar and camera measurements, we recorded our own real-world data. We demonstrate that our method is able to reach precise and robust sensor registration and show its generalization capabilities to different sensor alignments and perspectives.
The environmental perception of an autonomous vehicle is limited by its physical sensor ranges and algorithmic performance, as well as by occlusions that degrade its understanding of an ongoing traffic situation. This not only poses a significant threat to safety and limits driving speeds, but it can also lead to inconvenient maneuvers. Intelligent Infrastructure Systems can help to alleviate these problems. An Intelligent Infrastructure System can fill in the gaps in a vehicle’s perception and extend its field of view by providing additional detailed information about its surroundings, in the form of a digital model of the current traffic situation, i.e., a digital twin. However, detailed descriptions of such systems and working prototypes demonstrating their feasibility are scarce. In this paper, we propose a hardware and software architecture that enables such a reliable Intelligent Infrastructure System to be built. We have implemented this system in the real world and demonstrate its ability to create an accurate digital twin of an extended highway stretch, thus enhancing an autonomous vehicle’s perception beyond the limits of its onboard sensors. Furthermore, we evaluate the accuracy and reliability of the digital twin by using aerial images and earth observation methods for generating ground truth data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.