A new biopolymer–silica hybrid material consisting of inulin and tetraethoxysilane (TEOS) for use as an adsorbent was successfully synthesized via the sol–gel method in acidic conditions. The hydrolysis and condensation processes were attained in water/ethanol solution. Three molar ratios of inulin:TEOS (1:1, 1:2, and 2:1) were prepared and dried at various temperatures (50, 60, and 70 °C). The optimized molar ratio of 2:1 with a drying temperature of 70 °C was found to obtain the best morphology and characteristics for absorbent properties. Fourier transform infrared spectroscopy (FTIR) analysis showed a strong interaction between inulin and TEOS, which was also observed using energy dispersive X-ray spectroscopy (EDX). Field emission scanning electron microscopy (FESEM) images revealed the presence of nanoparticles on the rough surface of the hybrid sol–gel. X-ray diffractometer (XRD) analysis showed the amorphous state of the silica network where the inulin existed as an anhydrous crystalline phase. Brunauer–Emmet–Teller (BET) analysis confirmed that the composite was mesoporous, with 17.69 m2/g surface area and 34.06 Å pore size. According to thermogravimetric analysis (TGA) results, the hybrid inulin-TEOS adsorbent was thermally stable under a temperature of 200 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.