Adiponectin is an adipocyte-specific secretory protein that circulates in serum as a hexamer of relatively low molecular weight (LMW) and a larger multimeric structure of high molecular weight (HMW). Serum levels of the protein correlate with systemic insulin sensitivity. The full-length protein affects hepatic gluconeogenesis through improved insulin sensitivity, and a proteolytic fragment of adiponectin stimulates  oxidation in muscle. Here, we show that the ratio, and not the absolute amounts, between these two oligomeric forms (HMW to LMW) is critical in determining insulin sensitivity. We define a new index, S A , that can be calculated as the ratio of HMW/(HMW ؉ LMW). db/db mice, despite similar total adiponectin levels, display decreased S A values compared with wild type littermates, as do type II diabetic patients compared with insulin-sensitive individuals. Furthermore, S A improves with peroxisome proliferator-activated receptor-␥ agonist treatment (thiazolidinedione; TZD) in mice and humans. We demonstrate that changes in S A in a number of type 2 diabetic cohorts serve as a quantitative indicator of improvements in insulin sensitivity obtained during TZD treatment, whereas changes in total serum adiponectin levels do not correlate well at the individual level. Acute alterations in S A (⌬S A ) are strongly correlated with improvements in hepatic insulin sensitivity and are less relevant as an indicator of improved muscle insulin sensitivity in response to TZD treatment, further underscoring the conclusions from previous clamp studies that suggested that the liver is the primary site of action for the full-length protein. These observations suggest that the HMW adiponectin complex is the active form of this protein, which we directly demonstrate in vivo by its ability to depress serum glucose levels in a dose-dependent manner.
Type 2 diabetes frequently results from progressive failure of pancreatic -cell function in the presence of chronic insulin resistance. We tested whether chronic amelioration of insulin resistance would preserve pancreatic -cell function and delay or prevent the onset of type 2 diabetes in high-risk Hispanic women. Women with previous gestational diabetes were randomized to placebo (n ؍ 133) or the insulin-sensitizing drug troglitazone (400 mg/day; n ؍ 133) administered in doubleblind fashion. Fasting plasma glucose was measured every 3 months, and oral glucose tolerance tests (OGTTs) were performed annually to detect diabetes. Intravenous glucose tolerance tests (IVGTTs) were performed at baseline and 3 months later to identify early metabolic changes associated with any protection from diabetes. Women who did not develop diabetes during the trial returned for OGTTs and IVGTTs 8 months after study medications were stopped. During a median follow-up of 30 months on blinded medication, average annual diabetes incidence rates in the 236 women who returned for at least one follow-up visit were 12.1 and 5.4% in women assigned to placebo and troglitazone, respectively (P < 0.01). Protection from diabetes in the troglitazone group 1) was closely related to the degree of reduction in endogenous insulin requirements 3 months after randomization, 2) persisted 8 months after study medications were stopped, and 3) was associated with preservation of -cell compensation for insulin resistance. Treatment with troglitazone delayed or prevented the onset of type 2 diabetes in high-risk Hispanic women. The protective effect was associated with the preservation of pancreatic -cell function and appeared to be mediated by a reduction in the secretory demands placed on -cells by chronic insulin resistance.
Obesity is a growing problem in the United States and throughout the world. It is a risk factor for many chronic diseases. The BMI has been used to assess body fat for almost 200 years. BMI is known to be of limited accuracy, and is different for males and females with similar %body adiposity. Here, we define an alternative parameter, the body adiposity index (BAI = ((hip circumference)/((height)1.5) − 18)). The BAI can be used to reflect %body fat for adult men and women of differing ethnicities without numerical correction. We used a population study, the “BetaGene” study, to develop the new index of body adiposity. %Body fat, as measured by the dual-energy X-ray absorptiometry (DXA), was used as a “gold standard” for validation. Hip circumference (R = 0.602) and height (R = −0.524) are strongly correlated with %body fat and therefore chosen as principal anthropometric measures on which we base BAI. The BAI measure was validated in the “Triglyceride and Cardiovascular Risk in African-Americans (TARA)” study of African Americans. Correlation between DXA-derived %adiposity and the BAI was R = 0.85 for TARA with a concordance of C_b = 0.95. BAI can be measured without weighing, which may render it useful in settings where measuring accurate body weight is problematic. In summary, we have defined a new parameter, the BAI, which can be calculated from hip circumference and height only. It can be used in the clinical setting even in remote locations with very limited access to reliable scales. The BAI estimates %adiposity directly.
Gestational diabetes mellitus (GDM) is defined as glucose intolerance of various degrees that is first detected during pregnancy. GDM is detected through the screening of pregnant women for clinical risk factors and, among at-risk women, testing for abnormal glucose tolerance that is usually, but not invariably, mild and asymptomatic. GDM appears to result from the same broad spectrum of physiological and genetic abnormalities that characterize diabetes outside of pregnancy. Indeed, women with GDM are at high risk for having or developing diabetes when they are not pregnant. Thus, GDM provides a unique opportunity to study the early pathogenesis of diabetes and to develop interventions to prevent the disease.
Gestational diabetes mellitus (GDM) is defined as glucose intolerance of various degrees that is first detected during pregnancy. GDM is detected through the screening of pregnant women for clinical risk factors and, among at-risk women, testing for abnormal glucose tolerance that is usually, but not invariably, mild and asymptomatic. GDM appears to result from the same broad spectrum of physiological and genetic abnormalities that characterize diabetes outside of pregnancy. Indeed, women with GDM are at high risk for having or developing diabetes when they are not pregnant. Thus, GDM provides a unique opportunity to study the early pathogenesis of diabetes and to develop interventions to prevent the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.