Athymic nude mice carry neither conventional T cells nor NKT cells of thymic origin. However, NK1.1−TCRint cells are present in the liver and other immune organs of athymic mice, because these lymphocyte subsets are truly of extrathymic origin. In this study, we examined whether extrathymic T cells had the capability to protect mice from malarial infection. Although B6-nu/nu mice were more sensitive to malaria than control B6 mice, these athymic mice were able to survive malaria when a reduced number of parasitized erythrocytes (5 × 103 per mouse) were injected. At the fulminant stage, lymphocytosis occurred in the liver and the major expanding lymphocytes were NK1.1−TCRint cells (IL-2Rβ+TCRαβ+). Unconventional CD8+ NKT cells (Vα14−) also appeared. Similar to the case of B6 mice, autoantibodies (IgM type) against denatured DNA appeared during malarial infection. Immune lymphocytes isolated from the liver of athymic mice which had recovered from malaria were capable of protecting irradiated euthymic and athymic mice from malaria when cell transfer experiments were conducted. In conjunction with the previous results in euthymic mice, the present results in athymic mice suggest that the major lymphocyte subsets associated with protection against malaria might be extrathymic T cells.
Mice were fed ad libitum with a normal diet (25% protein) or low-protein diets (0-12.5% protein) for a wk and then infected with a nonlethal or lethal strain of Plasmodium yoelii, that is, blood stage infection. The same diet was continued until recovery. Mice fed with a normal diet showed severe parasitemia during nonlethal infection, but survived the infection. They died within 2 wk in the case of lethal infection. However, all mice fed with low-protein diets survived without apparent parasitemia (there were small peaks of parasitemia) in cases of both nonlethal and lethal strains. These surviving mice were found to have acquired potent innate immunity, showing the expansion of NK1.1 -TCRint cells and the production of autoantibodies during malarial infection. Severe combined immunodeficiency (scid) mice, which lack TCRint cells as well as TCRhigh cells, did not survive after malarial infection of lethal strain of P. yoelii, even when low-protein diets were given. These results suggest that low-protein diets enhanced innate immunity and inversely decreased conventional immunity, and that these immunological deviations rendered mice resistant against malaria. The present outcome also reminds us of our experience in the field study of malaria, in which some inhabitants eventually avoided contracting malaria even after apparent malarial infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.