Complex regional pain syndrome (CRPS) is a chronic, debilitating pain condition that usually arises after trauma to a limb, but its precise etiology remains elusive. Novel clinical signs based on body perceptual disturbances have been reported, but their pathophysiological mechanisms remain poorly understood. Investigators have used functional neuroimaging techniques (including MEG, EEG, fMRI, and PET) to study changes mainly within the somatosensory and motor cortices. Here, we provide a focused review of the neuroimaging research findings that have generated insights into the potential neurocognitive and neuroplastic mechanisms underlying perceptual disturbances in CRPS. Neuroimaging findings, particularly with regard to somatosensory processing, have been promising but limited by a number of technique-specific factors (such as the complexity of neuroimaging investigations, poor spatial resolution of EEG/MEG, and use of modeling procedures that do not draw causal inferences) and more general factors including small samples sizes and poorly characterized patients. These factors have led to an underappreciation of the potential heterogeneity of pathophysiology that may underlie variable clinical presentation in CRPS. Also, until now, neurological deficits have been predominantly investigated separately from perceptual and cognitive disturbances. Here, we highlight the need to identify neurocognitive phenotypes of patients with CRPS that are underpinned by causal explanations for perceptual disturbances. We suggest that a combination of larger cohorts, patient phenotyping, the use of both high temporal, and spatial resolution neuroimaging methods, and the identification of simplified biomarkers is likely to be the most fruitful approach to identifying neurocognitive phenotypes in CRPS. Based on our review, we explain how such phenotypes could be characterized in terms of hierarchical models of perception and corresponding disturbances in recurrent processing involving the somatosensory, salience and executive brain networks. We also draw attention to complementary neurological factors that may explain some CRPS symptoms, including the possibility of central neuroinflammation and neuronal atrophy, and how these phenomena may overlap but be partially separable from neurocognitive deficits.
Complex regional pain syndrome (CRPS) is a limb-confined posttraumatic pain syndrome with sympathetic features. The cause is unknown, but the results of a randomized crossover trial on low-dose intravenous immunoglobulins (IVIG) treatment point to a possible autoimmune mechanism. We tested purified serum immunoglobulin G (IgG) from patients with longstanding CRPS for evidence of antibodies interacting with autonomic receptors on adult primary cardiomyocytes, comparing with control IgG from healthy and diseased controls, and related the results to the clinical response to treatment with low-dose IVIG. We simultaneously recorded both single-cell contractions and intracellular calcium handling in an electrical field. Ten of 18 CRPS preparations and only 1/57 control preparations (P<0.0001) increased the sensitivity of the myocytes to the electric field, and this effect was abrogated by preincubation with α-1a receptor blockers. By contrast, effects on baseline calcium were blocked by preincubation with atropine. Interestingly, serum-IgG preparations from all 4 CRPS patients who had responded to low-dose IVIG with meaningful pain relief were effective in these assays, although 4/8 of the nonresponders were also active. To see if there were antibodies to the α-1a receptor, CRPS-IgG was applied to α-1a receptor-transfected rat-1 fibroblast cells. The CRPS serum IgG induced calcium flux, and fluorescence-activated cell sorting showed that there was serum IgG binding to the cells. The results suggest that patients with longstanding CRPS have serum antibodies to α-1a receptors, and that measurement of these antibodies may be useful in the diagnosis and management of the patients.
We present evidence of altered but highly variable cognitive processing (124-268 ms latency) in response to mechanical tactile stimuli in patients with CRPS compared with healthy controls. Such mid- to late-latency responses could potentially provide convenient and robust biomarkers of abnormal perceptual decision-making mechanisms in CRPS to aid in clinical detection and treatment.
Novel signs are reliable, easy to perform, and present in chronic pain patients. FP and BS have significant clinical utility in predicting persistent pain in a fracture group thereby allowing targeted early intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.