Chikungunya virus (CHIKV), an arthritogenic alphavirus, is transmitted to humans by infected Aedes (Ae.) aegypti and Ae.albopictus mosquitoes. In the study, reverse-transcription PCR (RT PCR) and virus isolation detected CHIKV in patient samples and also in adult Ae.albopictus mosquitoes that was derived from larvae collected during a chikungunya (CHIK) outbreak in Kerala in 2009. The CHIKV strains involved in the outbreak were the East, Central and South African (ECSA) genotype that had the E1 A226V mutation. The viral strains from the mosquitoes and CHIK patients from the same area showed a close relationship based on phylogenetic analysis. Genetic characterization by partial sequencing of non-structural protein 2 (nsP2; 378 bp), envelope E1 (505 bp) and E2 (428 bp) identified one critical mutation in the E2 protein coding region of these CHIKV strains. This novel, non-conservative mutation, L210Q, consistently present in both human and mosquito-derived samples studied, was within the region of the E2 protein (amino acids E2 200-220) that determines mosquito cell infectivity in many alpha viruses. Our results show the involvement of Ae. albopictus in this outbreak in Kerala and appearance of CHIKV with novel genetic changes. Detection of virus in adult mosquitoes, emerged in the laboratory from larvae, also points to the possibility of transovarial transmission (TOT) of mutant CHIKV strains in mosquitoes.
BackgroundLocal epidemiology of Dengue is defined by the genetic diversity of the circulating Dengue virus (DENV) strains. This important information is not available for the virus strains from most parts of the Indian subcontinent. The present study focused on the genetic diversity of the serotype 3 DENV strains (DENV-3) from India.ResultsA total of 22 DENV-3 strains identified by reverse-transcription PCR analysis of serum samples from 709 patients were studied. These samples were collected over a period of 4 years (2008–2011) from dengue fever suspected patients from Kerala, a dengue endemic state in South India. Comparison of a 1740bp nucleotide sequence of the viral Capsid-Pre-membrane-Envelope coding region of our strains and previously reported DENV-3 strains from India, South Asia and South America revealed non-synonymous substitutions that were genotype III-specific as well as sporadic. Evidence of positive selection was detected in the I81 amino acid residue of the envelope protein. Out of the 22 samples, three had I81A and 18 had I81V substitutions. In the phylogenetic analysis by maximum likelihood method the strains from Kerala clustered in two different lineages (lineage III and IV) within genotype III clade of DENV-3 strains. The ten strains that belonged to lineage IV had a signature amino acid substitution T219A in the envelope protein. Interestingly, all these strains were found to be closely related to a Singapore strain GU370053 isolated in 2007.ConclusionsOur study identifies for the first time the presence of lineage IV strains in the Indian subcontinent. Results indicate the possibility of a recent exotic introduction and also a shift from the existing lineage III strains to lineage IV. Lineage shifts in DENV-3 strains have been attributed to dramatic increase in disease severity in many parts of the world. Hence the present observation could be significant in terms of the clinical severity of future dengue cases in the region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.