Coded caching is used to reduce network congestion during peak hours. A single server is connected to a set of users through a bottleneck link, which generally is assumed to be errorfree. During non-peak hours, all the users have full access to the files and they fill their local cache with portions of the files available. During delivery phase, each user requests a file and the server delivers coded transmissions to meet the demands taking into consideration their cache contents. In this paper we assume that the shared link is error prone. A new delivery scheme is required to meet the demands of each user even after receiving finite number of transmissions in error. We characterize the minimum average rate and minimum peak rate for this problem. We find closed form expressions of these rates for a particular caching scheme namely symmetric batch prefetching. We also propose an optimal error correcting delivery scheme for coded caching problem with symmetric batch prefetching.
Classical coded caching setting avails each user to have one dedicated cache. This is generalized to a more general shared cache scheme and the exact expression for the worst case rate was derived in [E. Parrinello, A. Unsal, P. Elia, " Fundamental Limits of Caching in Heterogeneous Networks with Uncoded Prefetching," available on arXiv:1811.06247 [cs.IT], Nov. 2018]. For this case, an optimal linear error correcting delivery scheme is proposed and an expression for the peak rate is established for the same. Furthermore, a new delivery scheme is proposed, which gives an improved rate for the case when the demands are not distinct.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.