l-Dopa conjugated fluorescent gold cluster to cross undisturbed blood brain barrier for early stage imaging and drug delivery.
Fabrication of a surface-engineered electrospun scaffold having biomimetic properties like the extracellular matrix (ECM) is essential for neural tissue engineering. An electroconductive and elastomeric scaffold with aligned fibers acting as a substrate may have a great impact on the directional outgrowth of neurites. In this study, we have electrospun electrically conductive, polyurethane-based elastomeric and topographically aligned fibro-porous neural scaffolds. Adhesive proteins of the ECM are documented to have an important role in controlling neuronal cell behavior, including cell adhesion, proliferation, and neurite outgrowth. These bio-adhesion proteins or nanomaterials mimicking their action, if used for surface modification of neural scaffolds, may have the potential to accelerate the nerve repair process. Thus, electrospun scaffolds fabricated were surface-engineered using a unique and modified single-step electrospraying technique to coat the scaffold surface with an exploratory bio-adhesion agent, a thin layer of graphene oxide (GO) films. The study was then carried out to determine if the GO-coated electrospun electroconductive polycarbonate urethane (PCU) substrate can improve the bio-interface attributes of these scaffolds or may alter the neurite outgrowth of PC-12 cells like any other bio-adhesion proteins. Therefore, the hybrid scaffolds with GO coatings were compared with similar scaffolds coated with poly-l-lysine (PLL) for neural cell adhesion, proliferation, and neurite extension. Neurite outgrowth studies showed that although the average neurite length was comparable on both GO- and PLL-coated surfaces, the length profile of neurites, when categorized based on length, showed an increased number of lengthier neurites on the GO-coated hybrid scaffolds. In particular, the study brings out an innovative surface engineering technique for the coating of GO on polymeric scaffolds. It may be further put together in designing of hybrid surfaces with nanotopographical biophysical cues on three-dimensional neural scaffolds, which in turn may stimulate an accelerated neuronal regeneration via providing an enhanced ECM like milieu.
Encoding and consolidating information through learning and memory is vital in adaptation and survival. Dopamine (DA) is a critical neurotransmitter that modulates behavior. However, the role of DA in learning and memory processes is not well defined.Herein, we used the olfactory adaptive learning paradigm in Caenorhabditis elegans to elucidate the role of DA in the memory pathway. Cat-2 mutant worms with low DA synthesis showed a significant reduction in chemotaxis index (CI) compared to the wild type (WT) after short-term conditioning. In dat-1::ICE worms, having degeneration of DA neurons, there was a significant reduction in adaptive learning and memory. When the worms were trained in the presence of exogenous DA (10 mM) instead of food, a substantial increase in CI value was observed. Furthermore, our results suggest that both dop-1 and dop-3 DA receptors are involved in memory retention. The release of DA during conditioning is essential to initiate the learning pathway. We also noted an enhanced cholinergic receptor activity in the absence of dopaminergic neurons. The strains expressing GCaMP6 in DA neurons (pdat-1::GCaMP-6::mCherry) showed a rise in intracellular calcium influx in the presence of the conditional stimulus after training, suggesting DA neurons are activated during memory recall. These results reveal the critical role of DA in adaptive learning and memory, indicating that DA neurons play a crucial role in the effective processing of cognitive function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.