Chronic stress triggers a variety of physical and mental health problems, and how individuals cope with stress influences risk for emotional disorders. To investigate molecular mechanisms underlying distinct stress coping styles, we utilized rats that were selectively-bred for differences in emotionality and stress reactivity. We show that high novelty responding (HR) rats readily bury a shock probe in the defensive burying test, a measure of proactive stress coping behavior, while low novelty responding (LR) rats exhibit enhanced immobility, a measure of reactive coping. Shock exposure in the defensive burying test elicited greater activation of HR rats’ caudal dorsal raphe serotonergic cells compared to LRs, but lead to more pronounced activation throughout LRs’ amygdala (lateral, basolateral, central, and basomedial nuclei) compared to HRs. RNA-sequencing revealed 271 mRNA transcripts and 33 microRNA species that were differentially expressed in HR/LR raphe and amygdala. We mapped potential microRNA-mRNA networks by correlating and clustering mRNA and microRNA expression and identified networks that differed in either the HR/LR dorsal raphe or amygdala. A dorsal raphe network linked three microRNAs which were down-regulated in LRs (miR-206-3p, miR-3559-5p, and miR-378a-3p) to repression of genes related to microglia and immune response (Cd74, Cyth4, Nckap1l, and Rac2), the genes themselves were up-regulated in LR dorsal raphe. In the amygdala, another network linked miR-124-5p, miR-146a-5p, miR-3068-3p, miR-380-5p, miR-539-3p, and miR-7a-1-3p with repression of chromatin remodeling-related genes (Cenpk, Cenpq, Itgb3bp, and Mis18a). Overall this work highlights potential drivers of gene-networks and downstream molecular pathways within the raphe and amygdala that contribute to individual differences in stress coping styles and stress vulnerabilities.
Chronic pain in persons living with HIV (PLWH) may be related to alterations in endogenous pain modulatory processes (e.g., high facilitation and low inhibition of nociception) that promote exaggerated pain responses, known as hyperalgesia, and central nervous system (CNS) sensitization. This observational study examined differences in endogenous pain modulatory processes between 59 PLWH with chronic pain, 51 PLWH without chronic pain, and 50 controls without HIV or chronic pain. Quantitative sensory testing for temporal summation (TS) of mechanical and heat pain as well as conditioned pain modulation (CPM) were used to assess endogenous pain facilitatory and inhibitory processes, respectively. Associations among TS, CPM, and self-reported clinical pain severity were also examined in PLWH with chronic pain. Findings demonstrated significantly greater TS of mechanical and heat pain for PLWH with chronic pain compared to PLWH without chronic pain and controls. CPM effects were present in controls, but not in either PLWH with or without chronic pain. Among PLWH with chronic pain, greater TS of mechanical pain was significantly associated with greater average clinical pain severity. Results of this study suggest that enhanced facilitation and diminished inhibition characterizes the pronociceptive endogenous pain modulatory balance of persons living with HIV and chronic pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.