This work gives a posteriori error estimates for a finite volume implicit scheme, applied to a two-time nonlinear reaction-diffusion problem in population dynamics, whose evolution processes occur at two different time scales, represented by a parameter ε > 0 small enough. This work consists of building error indicators concerning time and space approximations and using them as a tool of adaptive mesh refinement in order to find approximate solutions to such models, in population dynamics, that are often hard to be handled analytically and also to be approximated numerically using the classical approach.An application of the theoretical results is provided to emphasize the efficiency of our approach compared to the classical one for a spatial inter-specific model with constant diffusivity and population growth given by a logistic law in population dynamics.
The main goal of this paper is to adapt a class of complexity reduction methods called aggregation of variables methods to the construction of reduced models of two-time reaction-diffusion-chemotaxis models of spatially structured populations and to provide an error bound of the approximate dynamics. Aggregation of variables methods are general techniques that allow reducing the dimension of a mathematical dynamical system. Here we reduce a system of Partial Differential Equations to a simpler Ordinary Differential Equation system, provided that the evolution processes occur at two different time scales: a slow one for the demography and a fast one for migrations and chemotaxis, with a ratio ε > 0 small enough. We give an approximation of the error between solutions of both original and reduced model for a generic function representing the demography. Finally, we provide an optimization of the error bound and validate numerically this result for a spatial inter-specific model with constant diffusion and population growth given by a logistic law in population dynamics.
In this work, we present a self-adaptive algorithm based on the techniques of the a posteriori estimates for the transport equation modeling the dispersion of pollutants in the atmospheric boundary layer at the local scale (industrial accident, urban air quality). The goal is to provide a powerful model for forecasting pollutants concentrations with better manipulation of available computing resources.This analysis is based on a vertex-centered Finite Volume Method in space and an implicit Euler scheme in time. We apply and validate our model, using a self-adaptive algorithm, with real atmospheric data of the Grand Casablanca area (Morocco).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.